Amun Jarzembski, Zachary T. Piontkowski, Wyatt Hodges, Matthew Bahr, Anthony McDonald, William Delmas, Gregory Pickrell, L. Yates
{"title":"Rapid subsurface analysis of frequency-domain thermoreflectance images with K-means clustering","authors":"Amun Jarzembski, Zachary T. Piontkowski, Wyatt Hodges, Matthew Bahr, Anthony McDonald, William Delmas, Gregory Pickrell, L. Yates","doi":"10.1063/5.0201473","DOIUrl":null,"url":null,"abstract":"K-means clustering analysis is applied to frequency-domain thermoreflectance (FDTR) hyperspectral image data to rapidly screen the spatial distribution of thermophysical properties at material interfaces. Performing FDTR while raster scanning a sample consisting of 8.6 μm of doped-silicon (Si) bonded to a doped-Si substrate identifies spatial variation in the subsurface bond quality. Routine thermal analysis at select pixels quantifies this variation in bond quality and allows assignment of bonded, partially bonded, and unbonded regions. Performing this same routine thermal analysis across the entire map, however, becomes too computationally demanding for rapid screening of bond quality. To address this, K-means clustering was used to reduce the dimensionality of the dataset from more than 20 000 pixel spectra to just K=3 component spectra. The three component spectra were then used to express every pixel in the image through a least-squares minimized linear combination providing continuous interpolation between the components across spatially varying features, e.g., bonded to unbonded transition regions. Fitting the component spectra to the thermal model, thermal properties for each K cluster are extracted and then distributed according to the weighting established by the regressed linear combination. Thermophysical property maps are then constructed and capture significant variation in bond quality over 25 μm length scales. The use of K-means clustering to achieve these thermal property maps results in a 74-fold speed improvement over explicit fitting of every pixel.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0201473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
K-means clustering analysis is applied to frequency-domain thermoreflectance (FDTR) hyperspectral image data to rapidly screen the spatial distribution of thermophysical properties at material interfaces. Performing FDTR while raster scanning a sample consisting of 8.6 μm of doped-silicon (Si) bonded to a doped-Si substrate identifies spatial variation in the subsurface bond quality. Routine thermal analysis at select pixels quantifies this variation in bond quality and allows assignment of bonded, partially bonded, and unbonded regions. Performing this same routine thermal analysis across the entire map, however, becomes too computationally demanding for rapid screening of bond quality. To address this, K-means clustering was used to reduce the dimensionality of the dataset from more than 20 000 pixel spectra to just K=3 component spectra. The three component spectra were then used to express every pixel in the image through a least-squares minimized linear combination providing continuous interpolation between the components across spatially varying features, e.g., bonded to unbonded transition regions. Fitting the component spectra to the thermal model, thermal properties for each K cluster are extracted and then distributed according to the weighting established by the regressed linear combination. Thermophysical property maps are then constructed and capture significant variation in bond quality over 25 μm length scales. The use of K-means clustering to achieve these thermal property maps results in a 74-fold speed improvement over explicit fitting of every pixel.