Structural and dielectric features of (Bi0.5Na0.5)1−xBaxTiO3 lead-free ferroelectric ceramics: An approach to the phase diagram

B. R. Moya, A. C. Iglesias-Jaime, A. C. Silva, A. Peláiz‐Barranco, J. D. S. Guerra
{"title":"Structural and dielectric features of (Bi0.5Na0.5)1−xBaxTiO3 lead-free ferroelectric ceramics: An approach to the phase diagram","authors":"B. R. Moya, A. C. Iglesias-Jaime, A. C. Silva, A. Peláiz‐Barranco, J. D. S. Guerra","doi":"10.1063/5.0191402","DOIUrl":null,"url":null,"abstract":"(Bi0.5Na0.5)1−xBaxTiO3 lead-free ferroelectric ceramics were synthesized via the conventional solid-state reaction method. Structural and dielectric properties were investigated as a function of the doping concentration, considering x = 0, 2, 5, 8, 10, 12, 16, and 18 at. % Ba. The structural analyses were carried out from the x-ray diffraction technique, including the Rietveld refinement method, and Raman spectroscopy. Results confirmed the formation of the perovskite structure, revealing different crystalline symmetries, depending on the Ba2+ concentration: the single rhombohedral ferroelectric phase (R3c) for x = 0 and 2 at. %; coexistence of both rhombohedral ferroelectric (R3c) and tetragonal antiferroelectric (P4bm) phases for x = 5 at. % Ba; the single tetragonal antiferroelectric phase (P4bm) for x = 8 at. % Ba; coexistence of two tetragonal phases (antiferroelectric P4bm and ferroelectric P4mm) for x = 10 at. % Ba; and the single tetragonal ferroelectric phase (P4mm) for x = 12, 16, and 18 at. % Ba. The characteristics of the phases’ transition, investigated from dielectric analysis, revealed the presence of two dielectric anomalies, which indeed have been associated to different phases’ transitions, one of them showing relaxor-like characteristics. The obtained results offer new insights for a better understanding on the features of the phase diagram for the studied ceramic system, according to the different observed crystalline symmetries (ferroelectric and antiferroelectric) in a very wide doping concentration. In the light of the obtained results, a new phase diagram has been proposed considering a wider compositional range than those reported in the literature.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0191402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

(Bi0.5Na0.5)1−xBaxTiO3 lead-free ferroelectric ceramics were synthesized via the conventional solid-state reaction method. Structural and dielectric properties were investigated as a function of the doping concentration, considering x = 0, 2, 5, 8, 10, 12, 16, and 18 at. % Ba. The structural analyses were carried out from the x-ray diffraction technique, including the Rietveld refinement method, and Raman spectroscopy. Results confirmed the formation of the perovskite structure, revealing different crystalline symmetries, depending on the Ba2+ concentration: the single rhombohedral ferroelectric phase (R3c) for x = 0 and 2 at. %; coexistence of both rhombohedral ferroelectric (R3c) and tetragonal antiferroelectric (P4bm) phases for x = 5 at. % Ba; the single tetragonal antiferroelectric phase (P4bm) for x = 8 at. % Ba; coexistence of two tetragonal phases (antiferroelectric P4bm and ferroelectric P4mm) for x = 10 at. % Ba; and the single tetragonal ferroelectric phase (P4mm) for x = 12, 16, and 18 at. % Ba. The characteristics of the phases’ transition, investigated from dielectric analysis, revealed the presence of two dielectric anomalies, which indeed have been associated to different phases’ transitions, one of them showing relaxor-like characteristics. The obtained results offer new insights for a better understanding on the features of the phase diagram for the studied ceramic system, according to the different observed crystalline symmetries (ferroelectric and antiferroelectric) in a very wide doping concentration. In the light of the obtained results, a new phase diagram has been proposed considering a wider compositional range than those reported in the literature.
(Bi0.5Na0.5)1-xBaxTiO3无铅铁电陶瓷的结构和介电特性:相图方法
通过传统的固态反应方法合成了 (Bi0.5Na0.5)1-xBaxTiO3 无铅铁电陶瓷。考虑到 x = 0、2、5、8、10、12、16 和 18 at.%的钡。通过 X 射线衍射技术(包括里特维尔德细化法)和拉曼光谱进行了结构分析。结果证实了包晶结构的形成,并揭示了不同的晶体对称性,这取决于 Ba2+ 的浓度:x = 0 和 2 at.%;x = 5 at.%的钡时,存在斜方铁电相(R3c)和四方反铁电相(P4bm);x = 8 at.%钡时的单一四方反铁电相(P4bm);x = 10 at.在 x = 12、16 和 18 at.%钡时的单一四方铁电相(P4mm)。通过介电分析研究这些相的转变特征,发现存在两种介电异常,它们确实与不同的相转变有关,其中一种显示出类似弛豫器的特征。根据所观察到的不同晶体对称性(铁电和反铁电),所获得的结果为更好地理解所研究陶瓷系统的相图特征提供了新的见解。根据所获得的结果,我们提出了一种新的相图,它考虑到了比文献报道更宽的成分范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信