{"title":"Study on the physicochemical properties of human hair fiber‐reinforced modified epoxidized soybean oil‐based composites","authors":"Gitashree Gogoi, Pragya Banerjee, T. K. Maji","doi":"10.1002/sia.7312","DOIUrl":null,"url":null,"abstract":"This paper investigates the effect of fiber surface treatment on various properties of hair fiber reinforced composites. Human hair fiber reinforced modified epoxidized soybean oil based composites were prepared by compression molding technique. Acid treatment of hair fibers was carried out by using three different concentrations of HCl solution (0.25%, 0.75%, and 1%, respectively) in order to achieve improvement in adhesion between the fiber and the matrix. Epoxidized soybean oil was modified using methacrylic acid and methacrylic anhydride to form methacrylic anhydride modified epoxidized soybean oil. Rosin acid derivative (a rigid comonomer) was prepared and used as a crosslinker. Fourier‐transform infrared spectroscopy was carried out to study the interaction among the components of the composites. Various properties, namely, mechanical, thermal, flame resistance, and chemical resistance were checked. Scanning electron microscopy of the fractured surface of the composites was carried out to examine the morphologies. Hair fibers treated with 0.75% of HCl showed maximum improvement in all the properties and could be employed as reinforcement in various composites to be used for structural applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7312","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the effect of fiber surface treatment on various properties of hair fiber reinforced composites. Human hair fiber reinforced modified epoxidized soybean oil based composites were prepared by compression molding technique. Acid treatment of hair fibers was carried out by using three different concentrations of HCl solution (0.25%, 0.75%, and 1%, respectively) in order to achieve improvement in adhesion between the fiber and the matrix. Epoxidized soybean oil was modified using methacrylic acid and methacrylic anhydride to form methacrylic anhydride modified epoxidized soybean oil. Rosin acid derivative (a rigid comonomer) was prepared and used as a crosslinker. Fourier‐transform infrared spectroscopy was carried out to study the interaction among the components of the composites. Various properties, namely, mechanical, thermal, flame resistance, and chemical resistance were checked. Scanning electron microscopy of the fractured surface of the composites was carried out to examine the morphologies. Hair fibers treated with 0.75% of HCl showed maximum improvement in all the properties and could be employed as reinforcement in various composites to be used for structural applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.