Emily L. Pakhtigian, M. Jeuland, Subhrendu K. Pattanayak, Jonathan Phillips
{"title":"Estimating Lost Dividends from Incomplete Energy Access Transitions","authors":"Emily L. Pakhtigian, M. Jeuland, Subhrendu K. Pattanayak, Jonathan Phillips","doi":"10.1017/bca.2024.14","DOIUrl":null,"url":null,"abstract":"\n Energy access is often considered a catalyst for development. Yet, the binary classification of household electrification misses important variation in service quality and in how households use electricity. To examine the benefits of household electrification and illustrate the importance of using more nuanced classifications of energy access, this article develops a metric called the Energy Access Dividend (EAD), which quantifies the electrification benefits forgone due to slow and incomplete energy transitions. This framework is flexible, allowing for the estimation of a variety of electrification benefits such as reduced lighting and cell phone charging expenditures, environmental improvements, time use and asset ownership changes, and improvements associated with productive energy use. To demonstrate the applicability of this framework, we calculate the EAD for several proposed electrification trajectory alternatives in Honduras. We find that in Honduras, a country with high rates of basic electricity access, achieving immediate universal, high-quality electricity would generate nearly $697 million in benefits over the period leading up to 2050. We also estimate the EADs associated with more limited immediate electrification as well as geographically based electrification scenarios, demonstrating that these calculations can inform priorities for energy policy design.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"36 46","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/bca.2024.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy access is often considered a catalyst for development. Yet, the binary classification of household electrification misses important variation in service quality and in how households use electricity. To examine the benefits of household electrification and illustrate the importance of using more nuanced classifications of energy access, this article develops a metric called the Energy Access Dividend (EAD), which quantifies the electrification benefits forgone due to slow and incomplete energy transitions. This framework is flexible, allowing for the estimation of a variety of electrification benefits such as reduced lighting and cell phone charging expenditures, environmental improvements, time use and asset ownership changes, and improvements associated with productive energy use. To demonstrate the applicability of this framework, we calculate the EAD for several proposed electrification trajectory alternatives in Honduras. We find that in Honduras, a country with high rates of basic electricity access, achieving immediate universal, high-quality electricity would generate nearly $697 million in benefits over the period leading up to 2050. We also estimate the EADs associated with more limited immediate electrification as well as geographically based electrification scenarios, demonstrating that these calculations can inform priorities for energy policy design.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.