{"title":"Continuous Shear Wave Elastography for Liver Using Frame-to-Frame Equalization of Complex Amplitude.","authors":"Naoki Tano, Ren Koda, Shunichiro Tanigawa, Naohisa Kamiyama, Yoshiki Yamakoshi, Marie Tabaru","doi":"10.1177/01617346241247127","DOIUrl":null,"url":null,"abstract":"This study addresses a crucial necessity in the field of noninvasive liver fibrosis diagnosis by introducing the concept of continuous shear wave elastography (C-SWE), utilizing an external vibration source and color Doppler imaging. However, an application of C-SWE to assess liver elasticity, a deep region within the human body, arises an issue of signal instability in the obtained data. To tackle this challenge, this work proposes a method involving the acquisition of multiple frames of datasets, which are subsequently compressed. Furthermore, the proposed frame-to-frame equalization method compensates discrepancies in the initial phase that might exist among multiple-frame datasets, thereby significantly enhancing signal stability. The experimental validation of this approach encompasses both phantom tests and in vivo experiments. In the phantom tests, the proposed technique is validated through a comparison with the established shear wave elastography (SWE) technique. The results demonstrate a remarkable agreement, with an error in shear wave velocity of less than 4.2%. Additionally, the efficacy of the proposed method is confirmed through in vivo tests. As a result, the stabilization of observed shear waves using the frame-to-frame equalization technique exhibits promising potential for accurately assessing human liver elasticity. These findings collectively underscore the viability of C-SWE as a potential diagnostic instrument for liver fibrosis.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"69 2","pages":"1617346241247127"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346241247127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses a crucial necessity in the field of noninvasive liver fibrosis diagnosis by introducing the concept of continuous shear wave elastography (C-SWE), utilizing an external vibration source and color Doppler imaging. However, an application of C-SWE to assess liver elasticity, a deep region within the human body, arises an issue of signal instability in the obtained data. To tackle this challenge, this work proposes a method involving the acquisition of multiple frames of datasets, which are subsequently compressed. Furthermore, the proposed frame-to-frame equalization method compensates discrepancies in the initial phase that might exist among multiple-frame datasets, thereby significantly enhancing signal stability. The experimental validation of this approach encompasses both phantom tests and in vivo experiments. In the phantom tests, the proposed technique is validated through a comparison with the established shear wave elastography (SWE) technique. The results demonstrate a remarkable agreement, with an error in shear wave velocity of less than 4.2%. Additionally, the efficacy of the proposed method is confirmed through in vivo tests. As a result, the stabilization of observed shear waves using the frame-to-frame equalization technique exhibits promising potential for accurately assessing human liver elasticity. These findings collectively underscore the viability of C-SWE as a potential diagnostic instrument for liver fibrosis.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.