{"title":"High spatial resolution surface plasmon resonance imaging using a plasmonic chip.","authors":"Yasunori Nawa, Keiko Tawa","doi":"10.1063/5.0201230","DOIUrl":null,"url":null,"abstract":"The surface plasmon resonance (SPR) technique has been widely applied to biosensing technologies for the rapid quantification of biomolecules without enzyme and fluorescent labeling. However, the conventional prism-coupling SPR method generally has a detection area of a few mm2, and the large contribution of the background signal forms a barrier to highly sensitive detection. Based on a highly spatially resolved SPR method, the present study constructed a scanning GC-SPR imaging instrument using an objective lens with a high numerical aperture and a plasmonic chip that could be used for grating-coupled SPR. Focusing light on the diffraction limit can suppress background signals and improve detection sensitivity. SPR imaging can also be performed by scanning a focal spot. Using this method, the refractive index of a mixture of water and dimethyl sulfoxide was measured with a detection accuracy of 2.43 × 10-3 RIU. Polydopamine films prepared with a thickness of <5 nm were also measured, and each film thickness was evaluated with high sensitivity from the effective refractive index detected in a small area of <1 µm2.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"87 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0201230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The surface plasmon resonance (SPR) technique has been widely applied to biosensing technologies for the rapid quantification of biomolecules without enzyme and fluorescent labeling. However, the conventional prism-coupling SPR method generally has a detection area of a few mm2, and the large contribution of the background signal forms a barrier to highly sensitive detection. Based on a highly spatially resolved SPR method, the present study constructed a scanning GC-SPR imaging instrument using an objective lens with a high numerical aperture and a plasmonic chip that could be used for grating-coupled SPR. Focusing light on the diffraction limit can suppress background signals and improve detection sensitivity. SPR imaging can also be performed by scanning a focal spot. Using this method, the refractive index of a mixture of water and dimethyl sulfoxide was measured with a detection accuracy of 2.43 × 10-3 RIU. Polydopamine films prepared with a thickness of <5 nm were also measured, and each film thickness was evaluated with high sensitivity from the effective refractive index detected in a small area of <1 µm2.