Double-layer hollow mesoporous silica nanoparticles for ultrasound-guided photodynamic treatment.

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Zhihui Chen, Wei Liu, Kaiwen Liu, Siqi Wang, Cuiying Li, Feiyun Wu, Shouju Wang, Yuxia Tang
{"title":"Double-layer hollow mesoporous silica nanoparticles for ultrasound-guided photodynamic treatment.","authors":"Zhihui Chen, Wei Liu, Kaiwen Liu, Siqi Wang, Cuiying Li, Feiyun Wu, Shouju Wang, Yuxia Tang","doi":"10.1088/1748-605X/ad4246","DOIUrl":null,"url":null,"abstract":"Cervical carcinoma persists as a major global public health burden. While conventional therapeutic modalities inevitably cause ablation of adjacent non-tumorous tissues, photodynamic therapy (PDT) offers a targeted cytotoxic strategy through a photosensitizing agent (PS). However, the hydrophobicity and lack of selective accumulation of promising PS compounds such as zinc(II) phthalocyanine (ZnPc) impedes their clinical translation as standalone agents. The present study sought to incorporate ZnPc within double-layer hollow mesoporous silica nanoparticles (DHMSN) as nanocarriers to enhance aqueous dispersibility and tumor specificity. Owing to their compartmentalized design, the hollow mesoporous silica nanoparticles (HMSN) demonstrated enhanced ultrasonic imaging contrast. Combined with the vaporization of the perfluorocarbon perfluoropentane (PFP), the HMSN-encapsulated ZnPc enabled real-time ultrasound monitoring of PDT treatment. In vivo, the innate thermal energy induced vaporization of the DHMSN-carried PFP to significantly amplify ultrasound signals from the tumor site. Results demonstrated biocompatibility, efficient PFP microbubble generation, and robust photocatalytic activity. Collectively, this investigation establishes ultrasound-guided PDT utilizing multi-layer HMSN as a targeted therapeutic strategy for cervical malignancies with mitigated toxicity.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad4246","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cervical carcinoma persists as a major global public health burden. While conventional therapeutic modalities inevitably cause ablation of adjacent non-tumorous tissues, photodynamic therapy (PDT) offers a targeted cytotoxic strategy through a photosensitizing agent (PS). However, the hydrophobicity and lack of selective accumulation of promising PS compounds such as zinc(II) phthalocyanine (ZnPc) impedes their clinical translation as standalone agents. The present study sought to incorporate ZnPc within double-layer hollow mesoporous silica nanoparticles (DHMSN) as nanocarriers to enhance aqueous dispersibility and tumor specificity. Owing to their compartmentalized design, the hollow mesoporous silica nanoparticles (HMSN) demonstrated enhanced ultrasonic imaging contrast. Combined with the vaporization of the perfluorocarbon perfluoropentane (PFP), the HMSN-encapsulated ZnPc enabled real-time ultrasound monitoring of PDT treatment. In vivo, the innate thermal energy induced vaporization of the DHMSN-carried PFP to significantly amplify ultrasound signals from the tumor site. Results demonstrated biocompatibility, efficient PFP microbubble generation, and robust photocatalytic activity. Collectively, this investigation establishes ultrasound-guided PDT utilizing multi-layer HMSN as a targeted therapeutic strategy for cervical malignancies with mitigated toxicity.
用于超声引导光动力治疗的双层中空介孔二氧化硅纳米粒子。
宫颈癌一直是全球公共卫生的一大负担。传统的治疗方法不可避免地会造成邻近非肿瘤组织的消融,而光动力疗法(PDT)则通过光敏剂(PS)提供了一种靶向细胞毒性策略。然而,锌(II)酞菁(ZnPc)等有前景的 PS 化合物的疏水性和缺乏选择性积累阻碍了它们作为独立药物的临床应用。本研究试图将 ZnPc 加入双层中空介孔二氧化硅纳米颗粒(DHMSN)作为纳米载体,以提高水分散性和肿瘤特异性。由于中空介孔二氧化硅纳米颗粒(HMSN)采用了分区设计,其超声成像对比度得到了增强。结合全氟碳化物全氟戊烷(PFP)的气化,HMSN包裹的ZnPc实现了对PDT治疗的实时超声监测。在体内,DHMSN携带的全氟碳化物气化所产生的固有热能可显著放大肿瘤部位的超声波信号。研究结果表明,这种材料具有生物相容性、高效的 PFP 微泡生成和强大的光催化活性。总之,这项研究确立了利用多层 HMSN 的超声引导光导治疗宫颈恶性肿瘤的靶向治疗策略,并减轻了其毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信