Porous network of nitrogen self-doped honeycomb like activated carbon derived from Caladium tricolor leaves: a multifunctional platform for energy and environmental applications
{"title":"Porous network of nitrogen self-doped honeycomb like activated carbon derived from Caladium tricolor leaves: a multifunctional platform for energy and environmental applications","authors":"Vishnu Sankar Sivasankarapillai, Shankar Baskaran, Atchaya Sundararajan, Masoom Raza Siddiqui, Saikh Mohammad Wabaidur, Azhagumuthu Muthukrishnan, Ragupathy Dhanusuraman","doi":"10.1007/s10934-024-01580-1","DOIUrl":null,"url":null,"abstract":"<div><p>Activated carbon with appreciable level of porosity and honeycomb like structure was synthesized through simple KOH activation of biochar obtained from <i>Caladium tricolor</i> leaves. The synthesized activated carbon was characterized for morphological and structural characteristics using various techniques. The material possesses an enhanced BET surface area (S<sub>BET</sub>) of 1429m<sup>2</sup>/g with significant microporous texture. XPS data revealed the presence of Nitrogen as the inherent dopant in the material which enhance electrochemical and adsorption perfmance. The activated carbon has been employed as electrode material for electrical double layer type capacitance (EDLC) type supercapacitor which showed promising specific capacitance of 428 F/g at a current density of 1 A/g. Cyclic stability studies revealed a retention of capacitance of 98% for 5000 cycles. Further, adsorption studies were conducted using Furazolidone drug and the adsorption efficiency was found to be 90% following Langmuir isotherm model. Kinetic studies revealed that the adsorption follows pseudo-second order kinetics. The material also investigated for ORR activity which showed notable results which can be further improved to be employed as a metal free Oxygen reduction reaction (ORR) catalyst.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1489 - 1502"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01580-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Activated carbon with appreciable level of porosity and honeycomb like structure was synthesized through simple KOH activation of biochar obtained from Caladium tricolor leaves. The synthesized activated carbon was characterized for morphological and structural characteristics using various techniques. The material possesses an enhanced BET surface area (SBET) of 1429m2/g with significant microporous texture. XPS data revealed the presence of Nitrogen as the inherent dopant in the material which enhance electrochemical and adsorption perfmance. The activated carbon has been employed as electrode material for electrical double layer type capacitance (EDLC) type supercapacitor which showed promising specific capacitance of 428 F/g at a current density of 1 A/g. Cyclic stability studies revealed a retention of capacitance of 98% for 5000 cycles. Further, adsorption studies were conducted using Furazolidone drug and the adsorption efficiency was found to be 90% following Langmuir isotherm model. Kinetic studies revealed that the adsorption follows pseudo-second order kinetics. The material also investigated for ORR activity which showed notable results which can be further improved to be employed as a metal free Oxygen reduction reaction (ORR) catalyst.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.