Experimental Study of Macro- and Micro-Scopic Damage in Red Sandstone under Dry and Wet Cycling

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiangmei Chen, Yongqiang Ren, Baoli Tang, Guojin Li, Feitian Zhang, Yunfei Liu
{"title":"Experimental Study of Macro- and Micro-Scopic Damage in Red Sandstone under Dry and Wet Cycling","authors":"Xiangmei Chen, Yongqiang Ren, Baoli Tang, Guojin Li, Feitian Zhang, Yunfei Liu","doi":"10.1155/2024/6681592","DOIUrl":null,"url":null,"abstract":"The high-strength red sandstone in its natural state is subjected to significant strength deterioration under alternating wet and dry conditions, which can cause many catastrophic problems in the process of engineering construction. It is important to deeply understand the damage mechanism of red sandstone under the action of dry and wet cycles. Therefore, this paper explores the mechanism of red sandstone’s uniaxial deformation and failure through indoor uniaxial compression tests, studies the damage to the microstructure of red sandstone under wet–dry cycles using scanning electron microscopy, and establishes a damage variable based on fractal dimension. The results show that with the increase of wet–dry cycles, the peak stress of red sandstone shows a decreasing trend, and the minimum peak stress is 17.3 MPa, which is a 46.62% decrease compared to the sample with 0 wet–dry cycles. During the wet–dry cycle process, there are four deformation characteristics of red sandstone samples, namely, crack compression, crack extension, progressive fracture, and crack penetration. SEM images show that the porosity, pore area, and fractal dimension all show a nonlinear increase, and the maximum damage variable can reach 10.41%. The research results can provide guidance for engineering design and slope failure mechanism research in red sandstone areas.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6681592","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The high-strength red sandstone in its natural state is subjected to significant strength deterioration under alternating wet and dry conditions, which can cause many catastrophic problems in the process of engineering construction. It is important to deeply understand the damage mechanism of red sandstone under the action of dry and wet cycles. Therefore, this paper explores the mechanism of red sandstone’s uniaxial deformation and failure through indoor uniaxial compression tests, studies the damage to the microstructure of red sandstone under wet–dry cycles using scanning electron microscopy, and establishes a damage variable based on fractal dimension. The results show that with the increase of wet–dry cycles, the peak stress of red sandstone shows a decreasing trend, and the minimum peak stress is 17.3 MPa, which is a 46.62% decrease compared to the sample with 0 wet–dry cycles. During the wet–dry cycle process, there are four deformation characteristics of red sandstone samples, namely, crack compression, crack extension, progressive fracture, and crack penetration. SEM images show that the porosity, pore area, and fractal dimension all show a nonlinear increase, and the maximum damage variable can reach 10.41%. The research results can provide guidance for engineering design and slope failure mechanism research in red sandstone areas.
干湿循环条件下红砂岩宏观和微观损伤的实验研究
自然状态下的高强度红砂岩在干湿交替条件下会出现明显的强度劣化,在工程建设过程中会引发许多灾难性问题。深入了解红砂岩在干湿循环作用下的破坏机理具有重要意义。因此,本文通过室内单轴压缩试验探讨了红砂岩的单轴变形和破坏机理,利用扫描电镜研究了干湿循环作用下红砂岩微观结构的破坏情况,并建立了基于分形维度的破坏变量。结果表明,随着湿干循环次数的增加,红砂岩的峰值应力呈下降趋势,最小峰值应力为 17.3 MPa,与湿干循环次数为 0 的样品相比下降了 46.62%。在湿-干循环过程中,红砂岩样品有四种变形特征,即裂纹压缩、裂纹扩展、渐进断裂和裂纹渗透。扫描电镜图像显示,孔隙率、孔隙面积和分形维度均呈非线性增长,最大破坏变量可达 10.41%。研究结果可为红砂岩地区的工程设计和边坡破坏机理研究提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信