Beibei Wang, He Huang, Ning Qin, Wenjing Zhao, Qin Wang, Suzhen Cao, Xing Chen, Xiangyu Xu, Xiaoli Duan
{"title":"Effect of NPAH Exposure on Lung Function of Children in Indoor Coal Combustion Environment","authors":"Beibei Wang, He Huang, Ning Qin, Wenjing Zhao, Qin Wang, Suzhen Cao, Xing Chen, Xiangyu Xu, Xiaoli Duan","doi":"10.1155/2024/6192008","DOIUrl":null,"url":null,"abstract":"<p>Nitropolycyclic aromatic hydrocarbon (NPAH) emissions from the combustion of household solid fuel may cause great harm to public health. Children are one of the most susceptible population groups at risk of indoor air pollutants due to their immature respiratory and immune systems. In this study, a primary school using household coal combustion for heating in winter was selected and forty participants were randomly recruited among schoolchildren. Fine particulate matter samples were collected by both individual portable samplers and fixed middle-flow samplers during the heating and nonheating seasons. The NPAH concentrations in PM<sub>2.5</sub> samples were analyzed by a gas chromatograph coupled to a mass spectrometer. Potential sources of NPAHs were identified by NPAH ratios as well as principal component analysis. Lung function of children was tested by an electronic spirometer. The relationship between NPAH exposure level and children’s lung function was studied. Finally, the cancer risk caused by NPAH inhalation was assessed. The results showed significantly higher individual NPAH exposure level in heating season (0.901 ± 0.396 ng·m<sup>-3</sup>) than that in nonheating season (0.094 ± 0.107 ng·m<sup>-3</sup>). Coal/biomass combustion and secondary formation were the potential NPAH sources in heating season. Significantly lower lung function of children was also found in heating season compared with that in nonheating season. As a result of the Monte Carlo simulation, the averaged incremental lifetime cancer risk (ILCR) values from the inhalation of NPAHs in the heating and nonheating seasons were 3.50 × 10<sup>−8</sup> and 2.13 × 10<sup>−8</sup>, respectively. Our research revealed the association between NPAH exposure and children’s lung function and confirmed the adverse effect of indoor coal combustion. The results also indicated that further control strategies on indoor coal combustion are needed to reduce the risk of NPAH exposure and protect children’s health.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6192008","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitropolycyclic aromatic hydrocarbon (NPAH) emissions from the combustion of household solid fuel may cause great harm to public health. Children are one of the most susceptible population groups at risk of indoor air pollutants due to their immature respiratory and immune systems. In this study, a primary school using household coal combustion for heating in winter was selected and forty participants were randomly recruited among schoolchildren. Fine particulate matter samples were collected by both individual portable samplers and fixed middle-flow samplers during the heating and nonheating seasons. The NPAH concentrations in PM2.5 samples were analyzed by a gas chromatograph coupled to a mass spectrometer. Potential sources of NPAHs were identified by NPAH ratios as well as principal component analysis. Lung function of children was tested by an electronic spirometer. The relationship between NPAH exposure level and children’s lung function was studied. Finally, the cancer risk caused by NPAH inhalation was assessed. The results showed significantly higher individual NPAH exposure level in heating season (0.901 ± 0.396 ng·m-3) than that in nonheating season (0.094 ± 0.107 ng·m-3). Coal/biomass combustion and secondary formation were the potential NPAH sources in heating season. Significantly lower lung function of children was also found in heating season compared with that in nonheating season. As a result of the Monte Carlo simulation, the averaged incremental lifetime cancer risk (ILCR) values from the inhalation of NPAHs in the heating and nonheating seasons were 3.50 × 10−8 and 2.13 × 10−8, respectively. Our research revealed the association between NPAH exposure and children’s lung function and confirmed the adverse effect of indoor coal combustion. The results also indicated that further control strategies on indoor coal combustion are needed to reduce the risk of NPAH exposure and protect children’s health.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.