José R. Eides, Brena R. M. Ikehara, Natália R. Almeida, Willian R. Macedo and Frederico G. Pinto*,
{"title":"Metabolomics as a Tool for Analysis of Wheat Leaves from Different Cultivars Infected with Pyricularia oryzae","authors":"José R. Eides, Brena R. M. Ikehara, Natália R. Almeida, Willian R. Macedo and Frederico G. Pinto*, ","doi":"10.1021/acsagscitech.3c00580","DOIUrl":null,"url":null,"abstract":"<p >Blast disease, caused by the fungus <i>Pyricularia oryzea</i>, has been a significant crop limiting factor, resulting in substantial productivity losses in wheat in Brazil. This study aimed to assess the response of two different wheat cultivars with the 2NS translocation to <i>P. oryzea</i> infection by evaluating the grain yield, hectoliter mass (HLM), and metabolic profile. Specifically, the goal was to identify cultivars with higher resistance to <i>P. oryzea</i> and to study the biochemical mechanisms involved in wheat resistance against blast disease. Statistical analysis, including analysis of variance and Scott–Knott test, was performed on grain yield and HLM. Gas chromatography–mass spectrometry (GC–MS)-based metabolomics data analysis was conducted using MS-Dial 4.9 and MetaboAnalyst 4.0 software. For noninfected plants of the two cultivars, no significant differences were observed in the grain yield and HLM. However, after infection by <i>P. oryzea</i>, two distinct groups emerged, exhibiting significant differences between the two cultivars in such variables. The cultivar “1403” was more resistant to blast compared to cultivar “Premium”. Metabolomic analysis revealed a distinct metabolic composition in response to <i>P. oryzae</i> infection, indicating variations in resistance to the pathogen characterized by changes in compounds from the tricarboxylic acid cycle (TCA) and increased levels of <span>d</span>-mannose in infected “Premium” plants.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 5","pages":"535–543"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.3c00580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Blast disease, caused by the fungus Pyricularia oryzea, has been a significant crop limiting factor, resulting in substantial productivity losses in wheat in Brazil. This study aimed to assess the response of two different wheat cultivars with the 2NS translocation to P. oryzea infection by evaluating the grain yield, hectoliter mass (HLM), and metabolic profile. Specifically, the goal was to identify cultivars with higher resistance to P. oryzea and to study the biochemical mechanisms involved in wheat resistance against blast disease. Statistical analysis, including analysis of variance and Scott–Knott test, was performed on grain yield and HLM. Gas chromatography–mass spectrometry (GC–MS)-based metabolomics data analysis was conducted using MS-Dial 4.9 and MetaboAnalyst 4.0 software. For noninfected plants of the two cultivars, no significant differences were observed in the grain yield and HLM. However, after infection by P. oryzea, two distinct groups emerged, exhibiting significant differences between the two cultivars in such variables. The cultivar “1403” was more resistant to blast compared to cultivar “Premium”. Metabolomic analysis revealed a distinct metabolic composition in response to P. oryzae infection, indicating variations in resistance to the pathogen characterized by changes in compounds from the tricarboxylic acid cycle (TCA) and increased levels of d-mannose in infected “Premium” plants.