{"title":"Optimization of method for cross section hydrogels preparation using high-pressure freezing.","authors":"Shuichi Ichihashi, Masahiko Kuwata, Kodai Kikuchi, Tatsushi Matsuyama, Akio Shimizu","doi":"10.1093/jmicro/dfae020","DOIUrl":null,"url":null,"abstract":"High-pressure water freeze fracturing (HPWFF) is a method for preparing water-containing samples such as hydrogels for scanning electron microscopy, in which a sample is placed in a divisible pressure vessel, filled with water, sealed, frozen with liquid nitrogen, then vacuum dried after the vessel is divided. The pressure (about 200 MPa) generated by the phase transition from water to ice is expected to inhibit ice crystal formation that causes large deformation of microstructure in the sample. To maximize the useable sample size, where SEM observation is not affected by ice crystal growth, preparation conditions including the size of pressure vessel were examined in this work. Using pressure vessels 8.0 mm, 5.5 mm and 4.5 mm in diameter, agarose gel, gelatin gel, wheat starch hydrogel, wheat flour noodle and cellulose hydrogel were used to prepare SEM samples. With agarose gel, an area of 3.6 mm in diameter in the 5.5 mm vessel was achieved as the maximum size of the area observable without ice crystal growth. The observable size of other samples was comparable, except for gelatin gel. As a result, observation of the three-dimensional network structure of hydrogels could be performed over a wider range than with the conventional method without shredding or chemical treatment of the samples. Additionally, usability of agarose gel for sample support matrix in HPWFF was demonstrated.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jmicro/dfae020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-pressure water freeze fracturing (HPWFF) is a method for preparing water-containing samples such as hydrogels for scanning electron microscopy, in which a sample is placed in a divisible pressure vessel, filled with water, sealed, frozen with liquid nitrogen, then vacuum dried after the vessel is divided. The pressure (about 200 MPa) generated by the phase transition from water to ice is expected to inhibit ice crystal formation that causes large deformation of microstructure in the sample. To maximize the useable sample size, where SEM observation is not affected by ice crystal growth, preparation conditions including the size of pressure vessel were examined in this work. Using pressure vessels 8.0 mm, 5.5 mm and 4.5 mm in diameter, agarose gel, gelatin gel, wheat starch hydrogel, wheat flour noodle and cellulose hydrogel were used to prepare SEM samples. With agarose gel, an area of 3.6 mm in diameter in the 5.5 mm vessel was achieved as the maximum size of the area observable without ice crystal growth. The observable size of other samples was comparable, except for gelatin gel. As a result, observation of the three-dimensional network structure of hydrogels could be performed over a wider range than with the conventional method without shredding or chemical treatment of the samples. Additionally, usability of agarose gel for sample support matrix in HPWFF was demonstrated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.