Scaling spectrum of a class of self-similar measures with product form on ℝ

IF 1 3区 数学 Q1 MATHEMATICS
Shan-Feng Yi, Min-Min Zhang
{"title":"Scaling spectrum of a class of self-similar measures with product form on ℝ","authors":"Shan-Feng Yi, Min-Min Zhang","doi":"10.1515/forum-2023-0466","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let <jats:italic>p</jats:italic>, <jats:italic>q</jats:italic>, <jats:inline-formula id=\"j_forum-2023-0466_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>N</m:mi>\n <m:mo>≥</m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0466_eq_0157.png\" />\n <jats:tex-math>{N\\geq 2}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> be three positive integers and let <jats:inline-formula id=\"j_forum-2023-0466_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>D</m:mi>\n <m:mo>=</m:mo>\n <m:mrow>\n <m:mrow>\n <m:mo stretchy=\"false\">{</m:mo>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mn>1</m:mn>\n <m:mo>,</m:mo>\n <m:mi mathvariant=\"normal\">…</m:mi>\n <m:mo>,</m:mo>\n <m:mrow>\n <m:mi>N</m:mi>\n <m:mo>-</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mo stretchy=\"false\">}</m:mo>\n </m:mrow>\n <m:mo>⊕</m:mo>\n <m:mrow>\n <m:msup>\n <m:mi>N</m:mi>\n <m:mi>p</m:mi>\n </m:msup>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">{</m:mo>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mn>1</m:mn>\n <m:mo>,</m:mo>\n <m:mi mathvariant=\"normal\">…</m:mi>\n <m:mo>,</m:mo>\n <m:mrow>\n <m:mi>N</m:mi>\n <m:mo>-</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mo stretchy=\"false\">}</m:mo>\n </m:mrow>\n </m:mrow>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0466_eq_0140.png\" />\n <jats:tex-math>{D=\\{0,1,\\ldots,N-1\\}\\oplus N^{p}\\{0,1,\\ldots,N-1\\}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> be a product form digit set. It is well known that if <jats:inline-formula id=\"j_forum-2023-0466_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>q</m:mi>\n <m:mo>∤</m:mo>\n <m:mi>p</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0466_eq_0277.png\" />\n <jats:tex-math>{q\\nmid p}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, then the self-similar measure <jats:inline-formula id=\"j_forum-2023-0466_ineq_9996\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi>μ</m:mi>\n <m:mrow>\n <m:msup>\n <m:mi>N</m:mi>\n <m:mi>q</m:mi>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mi>D</m:mi>\n </m:mrow>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0466_eq_0203.png\" />\n <jats:tex-math>{\\mu_{N^{q},D}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> generated by the iterated function system <jats:inline-formula id=\"j_forum-2023-0466_ineq_9995\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mrow>\n <m:mo stretchy=\"false\">{</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi>N</m:mi>\n <m:mi>q</m:mi>\n </m:msup>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mo>-</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n <m:mo>+</m:mo>\n <m:mi>d</m:mi>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mo stretchy=\"false\">}</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mrow>\n <m:mi>d</m:mi>\n <m:mo>∈</m:mo>\n <m:mi>D</m:mi>\n </m:mrow>\n <m:mo>,</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n <m:mo>∈</m:mo>\n <m:mi>ℝ</m:mi>\n </m:mrow>\n </m:mrow>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0466_eq_0222.png\" />\n <jats:tex-math>{\\{(N^{q})^{-1}(x+d)\\}_{d\\in D,x\\in\\mathbb{R}}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is a spectral measure with a spectrum</jats:p>\n <jats:p>\n <jats:disp-formula id=\"j_forum-2023-0466_eq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mrow>\n <m:mrow>\n <m:mi mathvariant=\"normal\">Λ</m:mi>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi>N</m:mi>\n <m:mi>q</m:mi>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mi>C</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:mrow>\n <m:mo maxsize=\"260%\" minsize=\"260%\">{</m:mo>\n <m:mrow>\n <m:munderover>\n <m:mo largeop=\"true\" movablelimits=\"false\" symmetric=\"true\">∑</m:mo>\n <m:mrow>\n <m:mi>i</m:mi>\n <m:mo>=</m:mo>\n <m:mn>0</m:mn>\n ","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0466","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let p, q, N 2 {N\geq 2} be three positive integers and let D = { 0 , 1 , , N - 1 } N p { 0 , 1 , , N - 1 } {D=\{0,1,\ldots,N-1\}\oplus N^{p}\{0,1,\ldots,N-1\}} be a product form digit set. It is well known that if q p {q\nmid p} , then the self-similar measure μ N q , D {\mu_{N^{q},D}} generated by the iterated function system { ( N q ) - 1 ( x + d ) } d D , x {\{(N^{q})^{-1}(x+d)\}_{d\in D,x\in\mathbb{R}}} is a spectral measure with a spectrum Λ ( N q , C ) = { i = 0
一类在ℝ上具有乘积形式的自相似度量的缩放谱
设 p、q、N ≥ 2 {N\geq 2} 为三个正整数,设 D = { 0 , 1 , ... , N - 1 } ⊕ N p { 0 , 1 , ... , N - 1 } {D=\{0,1,\ldots,N-1\}\oplus N^{p}\{0,1,\ldots,N-1\}} 是一个乘积形式的数字集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信