Sergey Skublov, N. Hamdard, M. Ivanov, A. Gavrilchik, V. Stativko
{"title":"Impurity composition of beryl from spodumene pegmatites of Pashki deposit (Nuristan province, Afghanistan)","authors":"Sergey Skublov, N. Hamdard, M. Ivanov, A. Gavrilchik, V. Stativko","doi":"10.19110/geov.2024.2.5","DOIUrl":null,"url":null,"abstract":"The SIMS method (secondary ions mass-spectrometry) determined the impurity composition of a beryl crystals (aquamarine) from the pegmatites of the Pashki lithium deposit (Nuristan province, Afghanistan). 12 local determinations of the content of 20 chemical elements (including halogens and water) were performed. In comparison with aquamarine from rare metals, including spodumene pegmatites from other regions of the world, the studied beryl is significantly enriched with large ion lithophile elements: Li (about 1100 ppm), Na (4500 ppm) and K (300 ppm). High concentrations of alkaline elements in the beryl of lithium pegmatites are considered as a genetic sign of the high potential of alkalis created during the crystallization of spodumene associated with beryl and other lithium minerals. This well-known genetically determined feature of beryl, characteristic of productive lithium pegmatites, therefore is promising in the development of search and evaluation criteria for lithium pegmatites of Nuristan and other pegmatite provinces.","PeriodicalId":23572,"journal":{"name":"Vestnik of geosciences","volume":"5 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19110/geov.2024.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The SIMS method (secondary ions mass-spectrometry) determined the impurity composition of a beryl crystals (aquamarine) from the pegmatites of the Pashki lithium deposit (Nuristan province, Afghanistan). 12 local determinations of the content of 20 chemical elements (including halogens and water) were performed. In comparison with aquamarine from rare metals, including spodumene pegmatites from other regions of the world, the studied beryl is significantly enriched with large ion lithophile elements: Li (about 1100 ppm), Na (4500 ppm) and K (300 ppm). High concentrations of alkaline elements in the beryl of lithium pegmatites are considered as a genetic sign of the high potential of alkalis created during the crystallization of spodumene associated with beryl and other lithium minerals. This well-known genetically determined feature of beryl, characteristic of productive lithium pegmatites, therefore is promising in the development of search and evaluation criteria for lithium pegmatites of Nuristan and other pegmatite provinces.