{"title":"Optimal convex domains for the first curl eigenvalue in dimension three","authors":"A. Enciso, Wadim Gerner, D. Peralta-Salas","doi":"10.1090/tran/8914","DOIUrl":null,"url":null,"abstract":"<p>We prove that there exists a bounded convex domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega subset-of double-struck upper R cubed\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω</mml:mi>\n <mml:mo>⊂</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega \\subset \\mathbb {R}^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of fixed volume that minimizes the first positive curl eigenvalue among all other bounded convex domains of the same volume. We show that this optimal domain cannot be analytic, and that it cannot be stably convex if it is sufficiently smooth (e.g., of class <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1 comma 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{1,1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). Existence results for uniformly Hölder optimal domains in a box (that is, contained in a fixed bounded domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D subset-of double-struck upper R cubed\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>D</mml:mi>\n <mml:mo>⊂</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">D\\subset \\mathbb {R}^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) are also presented.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/8914","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that there exists a bounded convex domain Ω⊂R3\Omega \subset \mathbb {R}^3 of fixed volume that minimizes the first positive curl eigenvalue among all other bounded convex domains of the same volume. We show that this optimal domain cannot be analytic, and that it cannot be stably convex if it is sufficiently smooth (e.g., of class C1,1C^{1,1}). Existence results for uniformly Hölder optimal domains in a box (that is, contained in a fixed bounded domain D⊂R3D\subset \mathbb {R}^3) are also presented.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.