Characteristic Polynomial of Power Graph for Dihedral Groups Using Degree-Based Matrices

IF 0.8 Q3 MULTIDISCIPLINARY SCIENCES
M. U. Romdhini, A. Nawawi, F. Al-Sharqi, A. Al-Quran
{"title":"Characteristic Polynomial of Power Graph for Dihedral Groups Using Degree-Based Matrices","authors":"M. U. Romdhini, A. Nawawi, F. Al-Sharqi, A. Al-Quran","doi":"10.11113/mjfas.v20n2.3357","DOIUrl":null,"url":null,"abstract":"A fundamental feature of spectral graph theory is the correspondence between matrix and graph. As a result of this relation, the characteristic polynomial of the graph can be formulated. This research focuses on the power graph of dihedral groups using degree-based matrices. Throughout this paper, we formulate the characteristic polynomial of the power graph of dihedral groups based on seven types of graph matrices which include the maximum degree, the minimum degree, the greatest common divisor degree, the first Zagreb, the second Zagreb, the misbalance degree, and the Nirmala matrices.","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v20n2.3357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental feature of spectral graph theory is the correspondence between matrix and graph. As a result of this relation, the characteristic polynomial of the graph can be formulated. This research focuses on the power graph of dihedral groups using degree-based matrices. Throughout this paper, we formulate the characteristic polynomial of the power graph of dihedral groups based on seven types of graph matrices which include the maximum degree, the minimum degree, the greatest common divisor degree, the first Zagreb, the second Zagreb, the misbalance degree, and the Nirmala matrices.
使用基于度数的矩阵计算二面形群幂图的特征多项式
谱图理论的一个基本特征是矩阵与图之间的对应关系。由于这种关系,可以提出图的特征多项式。本文的研究重点是使用基于度的矩阵研究二面群的幂图。在本文中,我们根据七种图矩阵(包括最大度矩阵、最小度矩阵、最大公因子矩阵、第一萨格勒布矩阵、第二萨格勒布矩阵、不平衡度矩阵和尼玛拉矩阵)来计算二面群幂图的特征多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信