Simplifying Data Analysis in Biomedical Research: An Automated, User-Friendly Tool

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS
Rúben Araújo, Luís Ramalhete, Ana Viegas, Cristiana P Von Rekowski, Tiago A H Fonseca, C. Calado, Luís Bento
{"title":"Simplifying Data Analysis in Biomedical Research: An Automated, User-Friendly Tool","authors":"Rúben Araújo, Luís Ramalhete, Ana Viegas, Cristiana P Von Rekowski, Tiago A H Fonseca, C. Calado, Luís Bento","doi":"10.3390/mps7030036","DOIUrl":null,"url":null,"abstract":"Robust data normalization and analysis are pivotal in biomedical research to ensure that observed differences in populations are directly attributable to the target variable, rather than disparities between control and study groups. ArsHive addresses this challenge using advanced algorithms to normalize populations (e.g., control and study groups) and perform statistical evaluations between demographic, clinical, and other variables within biomedical datasets, resulting in more balanced and unbiased analyses. The tool’s functionality extends to comprehensive data reporting, which elucidates the effects of data processing, while maintaining dataset integrity. Additionally, ArsHive is complemented by A.D.A. (Autonomous Digital Assistant), which employs OpenAI’s GPT-4 model to assist researchers with inquiries, enhancing the decision-making process. In this proof-of-concept study, we tested ArsHive on three different datasets derived from proprietary data, demonstrating its effectiveness in managing complex clinical and therapeutic information and highlighting its versatility for diverse research fields.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps7030036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Robust data normalization and analysis are pivotal in biomedical research to ensure that observed differences in populations are directly attributable to the target variable, rather than disparities between control and study groups. ArsHive addresses this challenge using advanced algorithms to normalize populations (e.g., control and study groups) and perform statistical evaluations between demographic, clinical, and other variables within biomedical datasets, resulting in more balanced and unbiased analyses. The tool’s functionality extends to comprehensive data reporting, which elucidates the effects of data processing, while maintaining dataset integrity. Additionally, ArsHive is complemented by A.D.A. (Autonomous Digital Assistant), which employs OpenAI’s GPT-4 model to assist researchers with inquiries, enhancing the decision-making process. In this proof-of-concept study, we tested ArsHive on three different datasets derived from proprietary data, demonstrating its effectiveness in managing complex clinical and therapeutic information and highlighting its versatility for diverse research fields.
简化生物医学研究中的数据分析:自动化、用户友好型工具
稳健的数据归一化和分析在生物医学研究中至关重要,可确保观察到的人群差异直接归因于目标变量,而不是对照组和研究组之间的差异。ArsHive 利用先进的算法对人群(如对照组和研究组)进行归一化处理,并对生物医学数据集中的人口、临床和其他变量进行统计评估,从而使分析结果更加平衡、公正。该工具的功能还可扩展到全面的数据报告,在保持数据集完整性的同时,阐明数据处理的效果。此外,ArsHive 还配备了 A.D.A.(自主数字助理),它采用 OpenAI 的 GPT-4 模型来协助研究人员进行查询,从而加强决策过程。在这项概念验证研究中,我们在源自专有数据的三个不同数据集上对 ArsHive 进行了测试,证明了它在管理复杂的临床和治疗信息方面的有效性,并突出了它在不同研究领域的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信