{"title":"Blast injury model estimates from multiple overpressure measurement locations on a single person-borne device","authors":"J.-P. Dionne, J. Levine, A. Makris","doi":"10.1007/s00193-024-01166-5","DOIUrl":null,"url":null,"abstract":"<div><p>Towards a better characterization of the increasing blast overpressure threat, person-borne sensors are being considered for large military population segments potentially subjected to explosive blast and firing of crew served weapons. Training and field data, tracked longitudinally across a soldier’s entire career, can help with the diagnosis of blast injuries and the improvement of standard operating procedures for both explosive forced entry and large weapons firing. However, a current challenge with person-born blast dosimeters resides with the position of the overpressure sensors themselves. Often, the sensors are not fully exposed to the blast locally, resulting in pressure measurements not representative of the blast conditions surrounding an individual. While fielding multiple individual and uncoupled dosimeter units around the body increases the likeliness of catching the representative blast exposure, issues arise from differences in internal clock, potential partial triggering, and the complexity of merging data from different sources. Instead, integrating multiple overpressure sensors pointing in different directions, within a single device that captures and records all data simultaneously, proves highly beneficial for data analysis and interpretation. This paper presents algorithms that combine the overpressure data collected from such multiple coupled sensors for each blast event to minimize the effect of blast directionality. In particular, an algorithm estimating the equivalent <i>side-on</i> blast overpressure is presented, facilitating injury estimates from existing established blast injury models adapted for the outputs from the blast dosimeters. An algorithm is also presented that estimates the orientation or provenance of an explosive blast relative to the soldier.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"339 - 356"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01166-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Towards a better characterization of the increasing blast overpressure threat, person-borne sensors are being considered for large military population segments potentially subjected to explosive blast and firing of crew served weapons. Training and field data, tracked longitudinally across a soldier’s entire career, can help with the diagnosis of blast injuries and the improvement of standard operating procedures for both explosive forced entry and large weapons firing. However, a current challenge with person-born blast dosimeters resides with the position of the overpressure sensors themselves. Often, the sensors are not fully exposed to the blast locally, resulting in pressure measurements not representative of the blast conditions surrounding an individual. While fielding multiple individual and uncoupled dosimeter units around the body increases the likeliness of catching the representative blast exposure, issues arise from differences in internal clock, potential partial triggering, and the complexity of merging data from different sources. Instead, integrating multiple overpressure sensors pointing in different directions, within a single device that captures and records all data simultaneously, proves highly beneficial for data analysis and interpretation. This paper presents algorithms that combine the overpressure data collected from such multiple coupled sensors for each blast event to minimize the effect of blast directionality. In particular, an algorithm estimating the equivalent side-on blast overpressure is presented, facilitating injury estimates from existing established blast injury models adapted for the outputs from the blast dosimeters. An algorithm is also presented that estimates the orientation or provenance of an explosive blast relative to the soldier.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.