Probabilistic Galois Theory: The square discriminant case

IF 0.8 3区 数学 Q2 MATHEMATICS
Lior Bary-Soroker, Or Ben-Porath, Vlad Matei
{"title":"Probabilistic Galois Theory: The square discriminant case","authors":"Lior Bary-Soroker,&nbsp;Or Ben-Porath,&nbsp;Vlad Matei","doi":"10.1112/blms.13049","DOIUrl":null,"url":null,"abstract":"<p>The paper studies the probability for a Galois group of a random polynomial to be <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mi>n</mi>\n </msub>\n <annotation>$A_n$</annotation>\n </semantics></math>. We focus on the so-called large box model, where we choose the coefficients of the polynomial independently and uniformly from <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mo>−</mo>\n <mi>L</mi>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>L</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace -L,\\ldots , L\\rbrace$</annotation>\n </semantics></math>. The state-of-the-art upper bound is <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mi>L</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(L^{-1})$</annotation>\n </semantics></math>, due to Bhargava. We conjecture a much stronger upper bound <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mrow>\n <mo>−</mo>\n <mi>n</mi>\n <mo>/</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n <annotation>$L^{-n/2 +\\epsilon }$</annotation>\n </semantics></math>, and that this bound is essentially sharp. We prove strong lower bounds both on this probability and on the related probability of the discriminant being a square.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 6","pages":"2162-2177"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13049","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper studies the probability for a Galois group of a random polynomial to be A n $A_n$ . We focus on the so-called large box model, where we choose the coefficients of the polynomial independently and uniformly from { L , , L } $\lbrace -L,\ldots , L\rbrace$ . The state-of-the-art upper bound is O ( L 1 ) $O(L^{-1})$ , due to Bhargava. We conjecture a much stronger upper bound L n / 2 + ε $L^{-n/2 +\epsilon }$ , and that this bound is essentially sharp. We prove strong lower bounds both on this probability and on the related probability of the discriminant being a square.

概率伽罗瓦理论:平方判别情况
本文研究了随机多项式的伽罗瓦群是 .我们将重点放在所谓的大箱模型上,在这个模型中,我们独立地、均匀地从 . 中选择多项式的系数,最先进的上界是由 Bhargava 提出的 .我们猜想有一个更强的上界 ,而且这个上界本质上是尖锐的。我们证明了这个概率以及相关的判别式为平方的概率的强下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信