Performance evaluation of VCR system with pure and various blends of R134a, R1234yf, and R1234ze (E) refrigerants

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-04-24 DOI:10.1002/htj.23065
Yogendra Vasantrao Kuwar
{"title":"Performance evaluation of VCR system with pure and various blends of R134a, R1234yf, and R1234ze (E) refrigerants","authors":"Yogendra Vasantrao Kuwar","doi":"10.1002/htj.23065","DOIUrl":null,"url":null,"abstract":"<p>The current small passenger car vapor compression refrigeration systems use high global warming potential (GWP) refrigerants causing the greenhouse gas effect. In the present work, the low GWP of two pure refrigerants, R1234yf and R1234ze (E), and 16 blends of R134a, R1234yf, and R1234ze (E) are analyzed numerically. The experiments were conducted with R134a refrigerant to validate the numerical results. The experiments were conducted at the compressor speed of 600–1500 rpm and the condensing air at 30–40°C, relative humidity of 85%, and velocity of 1–3 m/s. The simulation and experimental results for R134a are deviated by a minimum of 10% and a maximum of 15%. It is found that the latent heat of vaporization of the two refrigerant mixtures with 80% R134a–20% R1234yf and the three refrigerant blends of 50% R134a–10% R1234yf–40% R1234ze (E) are the highest among 16 combinations. The other blends show a moderate difference of latent heat with R134a, but for maximum cooling capacity, the blends with 80% R134a–20% R1234yf and 50% R134a–10% R1234yf–40% R1234ze (E) are found to be more suitable for practical applications.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The current small passenger car vapor compression refrigeration systems use high global warming potential (GWP) refrigerants causing the greenhouse gas effect. In the present work, the low GWP of two pure refrigerants, R1234yf and R1234ze (E), and 16 blends of R134a, R1234yf, and R1234ze (E) are analyzed numerically. The experiments were conducted with R134a refrigerant to validate the numerical results. The experiments were conducted at the compressor speed of 600–1500 rpm and the condensing air at 30–40°C, relative humidity of 85%, and velocity of 1–3 m/s. The simulation and experimental results for R134a are deviated by a minimum of 10% and a maximum of 15%. It is found that the latent heat of vaporization of the two refrigerant mixtures with 80% R134a–20% R1234yf and the three refrigerant blends of 50% R134a–10% R1234yf–40% R1234ze (E) are the highest among 16 combinations. The other blends show a moderate difference of latent heat with R134a, but for maximum cooling capacity, the blends with 80% R134a–20% R1234yf and 50% R134a–10% R1234yf–40% R1234ze (E) are found to be more suitable for practical applications.

使用纯 R134a、R1234yf 和 R1234ze (E) 制冷剂和各种混合制冷剂的 VCR 系统的性能评估
目前的小型乘用车蒸汽压缩制冷系统使用的制冷剂全球升温潜能值(GWP)较高,会造成温室气体效应。本研究对 R1234yf 和 R1234ze (E) 两种纯制冷剂以及 R134a、R1234yf 和 R1234ze (E) 的 16 种混合物的低全球升温潜能值进行了数值分析。为验证数值结果,使用 R134a 制冷剂进行了实验。实验条件为压缩机转速为 600-1500 rpm,冷凝空气温度为 30-40°C,相对湿度为 85%,速度为 1-3 m/s。R134a 的模拟和实验结果偏差最小为 10%,最大为 15%。研究发现,在 16 种混合制冷剂中,80% R134a-20% R1234yf 的两种混合制冷剂和 50% R134a-10% R1234yf-40% R1234ze (E) 的三种混合制冷剂的汽化潜热最高。其他混合制冷剂与 R134a 的潜热差别不大,但就最大冷却能力而言,80% R134a-20% R1234yf 和 50% R134a-10% R1234yf-40% R1234ze (E) 混合制冷剂更适合实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信