{"title":"Advanced computational approaches to understand protein aggregation","authors":"Deepshikha Ghosh, Anushka Biswas, Mithun Radhakrishna","doi":"10.1063/5.0180691","DOIUrl":null,"url":null,"abstract":"Protein aggregation is a widespread phenomenon implicated in debilitating diseases like Alzheimer's, Parkinson's, and cataracts, presenting complex hurdles for the field of molecular biology. In this review, we explore the evolving realm of computational methods and bioinformatics tools that have revolutionized our comprehension of protein aggregation. Beginning with a discussion of the multifaceted challenges associated with understanding this process and emphasizing the critical need for precise predictive tools, we highlight how computational techniques have become indispensable for understanding protein aggregation. We focus on molecular simulations, notably molecular dynamics (MD) simulations, spanning from atomistic to coarse-grained levels, which have emerged as pivotal tools in unraveling the complex dynamics governing protein aggregation in diseases such as cataracts, Alzheimer's, and Parkinson's. MD simulations provide microscopic insights into protein interactions and the subtleties of aggregation pathways, with advanced techniques like replica exchange molecular dynamics, Metadynamics (MetaD), and umbrella sampling enhancing our understanding by probing intricate energy landscapes and transition states. We delve into specific applications of MD simulations, elucidating the chaperone mechanism underlying cataract formation using Markov state modeling and the intricate pathways and interactions driving the toxic aggregate formation in Alzheimer's and Parkinson's disease. Transitioning we highlight how computational techniques, including bioinformatics, sequence analysis, structural data, machine learning algorithms, and artificial intelligence have become indispensable for predicting protein aggregation propensity and locating aggregation-prone regions within protein sequences. Throughout our exploration, we underscore the symbiotic relationship between computational approaches and empirical data, which has paved the way for potential therapeutic strategies against protein aggregation-related diseases. In conclusion, this review offers a comprehensive overview of advanced computational methodologies and bioinformatics tools that have catalyzed breakthroughs in unraveling the molecular basis of protein aggregation, with significant implications for clinical interventions, standing at the intersection of computational biology and experimental research.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"26 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0180691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Protein aggregation is a widespread phenomenon implicated in debilitating diseases like Alzheimer's, Parkinson's, and cataracts, presenting complex hurdles for the field of molecular biology. In this review, we explore the evolving realm of computational methods and bioinformatics tools that have revolutionized our comprehension of protein aggregation. Beginning with a discussion of the multifaceted challenges associated with understanding this process and emphasizing the critical need for precise predictive tools, we highlight how computational techniques have become indispensable for understanding protein aggregation. We focus on molecular simulations, notably molecular dynamics (MD) simulations, spanning from atomistic to coarse-grained levels, which have emerged as pivotal tools in unraveling the complex dynamics governing protein aggregation in diseases such as cataracts, Alzheimer's, and Parkinson's. MD simulations provide microscopic insights into protein interactions and the subtleties of aggregation pathways, with advanced techniques like replica exchange molecular dynamics, Metadynamics (MetaD), and umbrella sampling enhancing our understanding by probing intricate energy landscapes and transition states. We delve into specific applications of MD simulations, elucidating the chaperone mechanism underlying cataract formation using Markov state modeling and the intricate pathways and interactions driving the toxic aggregate formation in Alzheimer's and Parkinson's disease. Transitioning we highlight how computational techniques, including bioinformatics, sequence analysis, structural data, machine learning algorithms, and artificial intelligence have become indispensable for predicting protein aggregation propensity and locating aggregation-prone regions within protein sequences. Throughout our exploration, we underscore the symbiotic relationship between computational approaches and empirical data, which has paved the way for potential therapeutic strategies against protein aggregation-related diseases. In conclusion, this review offers a comprehensive overview of advanced computational methodologies and bioinformatics tools that have catalyzed breakthroughs in unraveling the molecular basis of protein aggregation, with significant implications for clinical interventions, standing at the intersection of computational biology and experimental research.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.