Luis Carlos Pérez Guzmán, Gina María Idárraga Ospina, Freddy Bolaños Martínez, Sergio Raúl Rivera Rodríguez
{"title":"Dynamic Demand Modeling Incorporating Renewable Energy Sources Using a Population-Based Optimization Method","authors":"Luis Carlos Pérez Guzmán, Gina María Idárraga Ospina, Freddy Bolaños Martínez, Sergio Raúl Rivera Rodríguez","doi":"10.37394/232016.2024.19.16","DOIUrl":null,"url":null,"abstract":"Due to the inclusion of distributed generation (DG) in microgrids (MGs), the accelerated growth in demand, and environmental concerns, suitable management and operational strategies are imperative. The utilization of wind and solar energy has rapidly increased in MGs. However, due to the uncertainties these systems present, accurately predicting energy generation remains challenging. This necessitates modeling the system’s random variables (such as renewable resource output and possibly load demand) using appropriate and feasible methods. The primary objective of this article is to determine the optimal setpoints for renewable energy sources (RES) and all elements involved in the MG, minimizing the total operation cost. The system comprises wind turbines (WT), photovoltaic panels (PV), energy storage systems (ESS), and electric vehicles (EVs). Weibull distribution and the Hottel and Liu Jordan equations are employed to determine the potential available capacity of wind and solar energy generation, respectively. ESS is utilized to enhance MG performance. For optimal management, a comprehensive mathematical model with practical constraints for each MG element is extracted. An efficient Population-Based Incremental Learning (PBIL) metaheuristic method is proposed to solve the optimization objective in an MG, demonstrating that this energy management system optimizes and effectively coordinates DG and ESS energy generation considering economic considerations. Finally, PBIL is compared with a commonly used model, Particle Swarm Optimization (PSO), across various scenarios, analyzing and evaluating their outcomes, showcasing a reduction in operation costs.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":"39 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2024.19.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the inclusion of distributed generation (DG) in microgrids (MGs), the accelerated growth in demand, and environmental concerns, suitable management and operational strategies are imperative. The utilization of wind and solar energy has rapidly increased in MGs. However, due to the uncertainties these systems present, accurately predicting energy generation remains challenging. This necessitates modeling the system’s random variables (such as renewable resource output and possibly load demand) using appropriate and feasible methods. The primary objective of this article is to determine the optimal setpoints for renewable energy sources (RES) and all elements involved in the MG, minimizing the total operation cost. The system comprises wind turbines (WT), photovoltaic panels (PV), energy storage systems (ESS), and electric vehicles (EVs). Weibull distribution and the Hottel and Liu Jordan equations are employed to determine the potential available capacity of wind and solar energy generation, respectively. ESS is utilized to enhance MG performance. For optimal management, a comprehensive mathematical model with practical constraints for each MG element is extracted. An efficient Population-Based Incremental Learning (PBIL) metaheuristic method is proposed to solve the optimization objective in an MG, demonstrating that this energy management system optimizes and effectively coordinates DG and ESS energy generation considering economic considerations. Finally, PBIL is compared with a commonly used model, Particle Swarm Optimization (PSO), across various scenarios, analyzing and evaluating their outcomes, showcasing a reduction in operation costs.
期刊介绍:
WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.