The performance of OPC and OPC3 water models in predictions of 2D structures under nanoconfinement.

Laiyang Wei, Xiaojiao Li, Qi Bai, Jing Kang, Jueying Song, Shuang Zhu, Lin Shen, Huan Wang, Chongqin Zhu, Wei-Hai Fang
{"title":"The performance of OPC and OPC3 water models in predictions of 2D structures under nanoconfinement.","authors":"Laiyang Wei, Xiaojiao Li, Qi Bai, Jing Kang, Jueying Song, Shuang Zhu, Lin Shen, Huan Wang, Chongqin Zhu, Wei-Hai Fang","doi":"10.1063/5.0202518","DOIUrl":null,"url":null,"abstract":"Nanoconfined water plays an important role in broad fields of science and engineering. Classical molecular dynamics (MD) simulations have been widely used to investigate water phases under nanoconfinement. The key ingredient of MD is the force field. In this study, we systematically investigated the performance of a recently introduced family of globally optimal water models, OPC and OPC3, and TIP4P/2005 in describing nanoconfined two-dimensional (2D) water ice. Our studies show that the melting points of the monolayer square ice (MSI) of all three water models are higher than the melting points of the corresponding bulk ice Ih. Under the same conditions, the melting points of MSI of OPC and TIP4P/2005 are the same and are ∼90 K lower than that of the OPC3 water model. In addition, we show that OPC and TIP4P/2005 water models are able to form a bilayer AA-stacked structure and a trilayer AAA-stacked structure, which are not the cases for the OPC3 model. Considering the available experimental data and first-principles simulations, we consider the OPC water model as a potential water model for 2D water ice MD studies.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"48 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0202518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoconfined water plays an important role in broad fields of science and engineering. Classical molecular dynamics (MD) simulations have been widely used to investigate water phases under nanoconfinement. The key ingredient of MD is the force field. In this study, we systematically investigated the performance of a recently introduced family of globally optimal water models, OPC and OPC3, and TIP4P/2005 in describing nanoconfined two-dimensional (2D) water ice. Our studies show that the melting points of the monolayer square ice (MSI) of all three water models are higher than the melting points of the corresponding bulk ice Ih. Under the same conditions, the melting points of MSI of OPC and TIP4P/2005 are the same and are ∼90 K lower than that of the OPC3 water model. In addition, we show that OPC and TIP4P/2005 water models are able to form a bilayer AA-stacked structure and a trilayer AAA-stacked structure, which are not the cases for the OPC3 model. Considering the available experimental data and first-principles simulations, we consider the OPC water model as a potential water model for 2D water ice MD studies.
OPC 和 OPC3 水模型在纳米强化下预测二维结构的性能。
纳米约束水在科学和工程的广泛领域发挥着重要作用。经典分子动力学(MD)模拟已被广泛用于研究纳米约束下的水相。MD 的关键要素是力场。在本研究中,我们系统地研究了最近引入的全局最优水模型系列 OPC 和 OPC3 以及 TIP4P/2005 在描述纳米约束二维(2D)水冰时的性能。我们的研究表明,这三种水模型的单层方冰(MSI)的熔点都高于相应的块冰 Ih 的熔点。在相同条件下,OPC 和 TIP4P/2005 的 MSI 熔点相同,比 OPC3 水模型的熔点低 ∼ 90 K。此外,我们还发现 OPC 和 TIP4P/2005 水模型能够形成双层 AA 叠层结构和三层 AAA 叠层结构,而 OPC3 模型则不能。考虑到现有的实验数据和第一原理模拟,我们认为 OPC 水模型是二维水冰 MD 研究的潜在水模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信