Spin polarization of photoelectrons emitted from spin-orbit coupled surface states of Pb/Ge(111).

IF 1.5 4区 工程技术 Q3 MICROSCOPY
Microscopy Pub Date : 2024-04-25 DOI:10.1093/jmicro/dfae021
K. Yaji, Kenta Kuroda, Shunsuke Tsuda, Fumio Komori
{"title":"Spin polarization of photoelectrons emitted from spin-orbit coupled surface states of Pb/Ge(111).","authors":"K. Yaji, Kenta Kuroda, Shunsuke Tsuda, Fumio Komori","doi":"10.1093/jmicro/dfae021","DOIUrl":null,"url":null,"abstract":"We report that the spin vector of photoelectrons emitted from an atomic layer Pb grown on a germanium substrate [Pb/Ge(111)] can be controlled using an electric field of light. The spin polarization of photoelectrons excited by a linearly polarized light is precisely investigated by spin- and angle-resolved photoemission spectroscopy. The spin polarization of the photoelectrons observed in the mirror plane reverses between p- and s-polarized lights. Considering the dipole transition selection rule, the surface state of Pb/Ge(111) is represented by a linear combination of symmetric and asymmetric orbital components coupled with spins in mutually opposite directions. The spin direction of the photoelectrons is different from that of the initial state when the electric field vector of linearly polarized light deviates from p- or s-polarization conditions. The quantum interference in the photoexcitation process can determine the direction of the spin vector of photoelectrons.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jmicro/dfae021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

We report that the spin vector of photoelectrons emitted from an atomic layer Pb grown on a germanium substrate [Pb/Ge(111)] can be controlled using an electric field of light. The spin polarization of photoelectrons excited by a linearly polarized light is precisely investigated by spin- and angle-resolved photoemission spectroscopy. The spin polarization of the photoelectrons observed in the mirror plane reverses between p- and s-polarized lights. Considering the dipole transition selection rule, the surface state of Pb/Ge(111) is represented by a linear combination of symmetric and asymmetric orbital components coupled with spins in mutually opposite directions. The spin direction of the photoelectrons is different from that of the initial state when the electric field vector of linearly polarized light deviates from p- or s-polarization conditions. The quantum interference in the photoexcitation process can determine the direction of the spin vector of photoelectrons.
Pb/Ge(111) 自旋轨道耦合表面态发射的光电子的自旋极化。
我们报告了利用光的电场可以控制生长在锗基底 [Pb/Ge(111)] 上的原子层 Pb 发射的光电子的自旋矢量。利用自旋和角度分辨光发射光谱精确研究了线性偏振光激发的光电子的自旋极化。在镜面上观察到的光电子的自旋极化在 p 偏振光和 s 偏振光之间发生了逆转。考虑到偶极转换选择规则,Pb/Ge(111)的表面态由对称和非对称轨道成分的线性组合表示,它们的自旋方向相互相反。当线性偏振光的电场矢量偏离 p 偏振或 s 偏振条件时,光电子的自旋方向与初始状态不同。光激发过程中的量子干涉可以决定光电子自旋矢量的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microscopy
Microscopy Physics and Astronomy-Instrumentation
CiteScore
3.30
自引率
11.10%
发文量
76
期刊介绍: Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信