Towards a classification of isolated 𝑗-invariants

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Abbey Bourdon, Sachi Hashimoto, Timo Keller, Z. Klagsbrun, David Lowry-Duda, Travis Morrison, Filip Najman, Himanshu Shukla
{"title":"Towards a classification of isolated 𝑗-invariants","authors":"Abbey Bourdon, Sachi Hashimoto, Timo Keller, Z. Klagsbrun, David Lowry-Duda, Travis Morrison, Filip Najman, Himanshu Shukla","doi":"10.1090/mcom/3956","DOIUrl":null,"url":null,"abstract":"<p>We develop an algorithm to test whether a non-complex multiplication elliptic curve <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E slash bold upper Q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E/\\mathbf {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> gives rise to an isolated point of any degree on any modular curve of the form <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 1 left-parenthesis upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X_1(N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This builds on prior work of Zywina which gives a method for computing the image of the adelic Galois representation associated to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Running this algorithm on all elliptic curves presently in the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-functions and Modular Forms Database and the Stein–Watkins Database gives strong evidence for the conjecture that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> gives rise to an isolated point on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 1 left-parenthesis upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X_1(N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> if and only if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"j left-parenthesis upper E right-parenthesis equals negative 140625 slash 8 comma negative 9317\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>j</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>E</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mo>−</mml:mo>\n <mml:mn>140625</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>8</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>−</mml:mo>\n <mml:mn>9317</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">j(E)=-140625/8, -9317</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"351 slash 4\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>351</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">351/4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative 162677523113838677\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>−</mml:mo>\n <mml:mn>162677523113838677</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">-162677523113838677</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop an algorithm to test whether a non-complex multiplication elliptic curve E / Q E/\mathbf {Q} gives rise to an isolated point of any degree on any modular curve of the form X 1 ( N ) X_1(N) . This builds on prior work of Zywina which gives a method for computing the image of the adelic Galois representation associated to E E . Running this algorithm on all elliptic curves presently in the L L -functions and Modular Forms Database and the Stein–Watkins Database gives strong evidence for the conjecture that E E gives rise to an isolated point on X 1 ( N ) X_1(N) if and only if j ( E ) = 140625 / 8 , 9317 j(E)=-140625/8, -9317 , 351 / 4 351/4 , or 162677523113838677 -162677523113838677 .

对孤立𝑗变量进行分类
我们开发了一种算法来检验非复数乘法椭圆曲线 E / Q E/\mathbf {Q} 是否会在任何形式为 X 1 ( N ) X_1(N)的模态曲线上产生一个任意度的孤立点。这建立在 Zywina 之前的工作基础上,Zywina 给出了一种计算与 E E 相关联的adelic伽罗瓦表示的映像的方法。在 L L 函数和模块形式数据库以及 Stein-Watkins 数据库中的所有椭圆曲线上运行这一算法,有力地证明了以下猜想:当且仅当 j ( E ) = - 140625 / 8 , - 9317 j(E)=-140625/8, -9317 , 351 / 4 351/4 , 或 - 162677523113838677 -162677523113838677 时,E E 在 X 1 ( N ) X_1(N)上产生孤立点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信