Abbey Bourdon, Sachi Hashimoto, Timo Keller, Z. Klagsbrun, David Lowry-Duda, Travis Morrison, Filip Najman, Himanshu Shukla
{"title":"Towards a classification of isolated 𝑗-invariants","authors":"Abbey Bourdon, Sachi Hashimoto, Timo Keller, Z. Klagsbrun, David Lowry-Duda, Travis Morrison, Filip Najman, Himanshu Shukla","doi":"10.1090/mcom/3956","DOIUrl":null,"url":null,"abstract":"<p>We develop an algorithm to test whether a non-complex multiplication elliptic curve <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E slash bold upper Q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E/\\mathbf {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> gives rise to an isolated point of any degree on any modular curve of the form <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 1 left-parenthesis upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X_1(N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This builds on prior work of Zywina which gives a method for computing the image of the adelic Galois representation associated to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Running this algorithm on all elliptic curves presently in the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-functions and Modular Forms Database and the Stein–Watkins Database gives strong evidence for the conjecture that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> gives rise to an isolated point on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 1 left-parenthesis upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X_1(N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> if and only if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"j left-parenthesis upper E right-parenthesis equals negative 140625 slash 8 comma negative 9317\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>j</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>E</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mo>−</mml:mo>\n <mml:mn>140625</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>8</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>−</mml:mo>\n <mml:mn>9317</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">j(E)=-140625/8, -9317</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"351 slash 4\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>351</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">351/4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative 162677523113838677\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>−</mml:mo>\n <mml:mn>162677523113838677</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">-162677523113838677</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop an algorithm to test whether a non-complex multiplication elliptic curve E/QE/\mathbf {Q} gives rise to an isolated point of any degree on any modular curve of the form X1(N)X_1(N). This builds on prior work of Zywina which gives a method for computing the image of the adelic Galois representation associated to EE. Running this algorithm on all elliptic curves presently in the LL-functions and Modular Forms Database and the Stein–Watkins Database gives strong evidence for the conjecture that EE gives rise to an isolated point on X1(N)X_1(N) if and only if j(E)=−140625/8,−9317j(E)=-140625/8, -9317, 351/4351/4, or −162677523113838677-162677523113838677.