Trend and change-point analyses of meteorological variables using Mann–Kendall family tests and innovative trend assessment techniques in New Bhupania command (India)
Venkatesh Gaddikeri, A. Sarangi, D. K. Singh, Malkhan Singh Jatav, Jitendra Rajput, N. L. Kushwaha
{"title":"Trend and change-point analyses of meteorological variables using Mann–Kendall family tests and innovative trend assessment techniques in New Bhupania command (India)","authors":"Venkatesh Gaddikeri, A. Sarangi, D. K. Singh, Malkhan Singh Jatav, Jitendra Rajput, N. L. Kushwaha","doi":"10.2166/wcc.2024.462","DOIUrl":null,"url":null,"abstract":"\n Climate change (CC) significantly influences agricultural water productivity, necessitating increased irrigation. Therefore, the present study was undertaken to assess the trend and change-point analyses of weather variables such as temperature (T), rainfall (R), and reference evapotranspiration (ET0) using 31-year long-term data for semi-arid climate. The analysis was carried out employing Mann–Kendall (MK), Modified Mann–Kendall (MMK), Innovative Trend Analysis (ITA), and Innovative Polygon Trend Analysis (IPTA) methods. Homogeneity tests, including Pettitt's test, Standard Normal Homogeneity Test (SNHT) , Buishand range test, and Von Neumann Ratio Test (VNRT), were employed to detect change points (CPs) in the time series data. The results indicated that, for maximum temperature, MK and MMK revealed a positive trend for September and July, respectively, while minimum temperatures indicated increasing trends in August and September. Rainfall exhibited an increasing trend during the Zaid season (April–May). ET0 exhibited a negative trend in January. ITA and IPTA displayed a mixture of positive and negative trends across months and seasons. The change-point analysis revealed that for Tmax, the CP occurred in 1998 for time-series data for the month of April. Likewise, for Tmin, the change points for April and August time series were found in 1997.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"9 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change (CC) significantly influences agricultural water productivity, necessitating increased irrigation. Therefore, the present study was undertaken to assess the trend and change-point analyses of weather variables such as temperature (T), rainfall (R), and reference evapotranspiration (ET0) using 31-year long-term data for semi-arid climate. The analysis was carried out employing Mann–Kendall (MK), Modified Mann–Kendall (MMK), Innovative Trend Analysis (ITA), and Innovative Polygon Trend Analysis (IPTA) methods. Homogeneity tests, including Pettitt's test, Standard Normal Homogeneity Test (SNHT) , Buishand range test, and Von Neumann Ratio Test (VNRT), were employed to detect change points (CPs) in the time series data. The results indicated that, for maximum temperature, MK and MMK revealed a positive trend for September and July, respectively, while minimum temperatures indicated increasing trends in August and September. Rainfall exhibited an increasing trend during the Zaid season (April–May). ET0 exhibited a negative trend in January. ITA and IPTA displayed a mixture of positive and negative trends across months and seasons. The change-point analysis revealed that for Tmax, the CP occurred in 1998 for time-series data for the month of April. Likewise, for Tmin, the change points for April and August time series were found in 1997.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.