Valentina Ojeda, Pedro Vega-Jorquera, Erick de la Barra, Luis Palma-Chilla, Luis Vidal, José Saavedra, Alfredo Pizarro
{"title":"Characterization of Seismicity and Seismic Hazard in the Coquimbo Region, Chile: A Probabilistic Study","authors":"Valentina Ojeda, Pedro Vega-Jorquera, Erick de la Barra, Luis Palma-Chilla, Luis Vidal, José Saavedra, Alfredo Pizarro","doi":"10.1007/s00024-024-03474-4","DOIUrl":null,"url":null,"abstract":"<div><p>In order to seismically characterize Chile’s northern Coquimbo Region, data from 2003 to 2020 were considered. The region was divided into 30 zones of <span>\\(0.5^\\circ\\)</span> latitude and <span>\\(0.5^\\circ\\)</span> longitude and non-extensive statistical physics was used. Both, the Sotolongo–Costa–Posadas (SCP) and Mathai models were deployed to analyze the magnitude-frequency distribution. A sub-division into cells of the catalog allowed to demonstrate that systems with value of <span>\\(q \\sim 1\\)</span> present exponential behavior, while it was expected to obtain <span>\\(q > 1\\)</span>, by superimposing sub-systems supporting the superstatistical model. Thus, by subdividing the Coquimbo region into south and north, we found that in both zones the entropic index is greater than 1, <span>\\(q>1\\)</span>, However, in the southern zone the long-range effects are greater than in the north, according to the value obtained, which means both sectors are well described under a nonextensive statistical model, be it the SCP model or the Mathai one. The entropic index is <span>\\(q>1\\)</span> and in both cases <span>\\(R^2>0.99\\)</span>. As the region is considered as a whole, the nonextensive statistical distribution is the more adequate one. With respect to probabilistic seismic hazard assessment, Mathai’s model proved to have the better fit. Thus, the frequency-interevent time distribution was used for different limit magnitude values. Our analysis showed that the probability occurrence of a seismic event in the region’s north is lower than in the south considering the same period. In the north the behavior is of Poissonian type.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03474-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to seismically characterize Chile’s northern Coquimbo Region, data from 2003 to 2020 were considered. The region was divided into 30 zones of \(0.5^\circ\) latitude and \(0.5^\circ\) longitude and non-extensive statistical physics was used. Both, the Sotolongo–Costa–Posadas (SCP) and Mathai models were deployed to analyze the magnitude-frequency distribution. A sub-division into cells of the catalog allowed to demonstrate that systems with value of \(q \sim 1\) present exponential behavior, while it was expected to obtain \(q > 1\), by superimposing sub-systems supporting the superstatistical model. Thus, by subdividing the Coquimbo region into south and north, we found that in both zones the entropic index is greater than 1, \(q>1\), However, in the southern zone the long-range effects are greater than in the north, according to the value obtained, which means both sectors are well described under a nonextensive statistical model, be it the SCP model or the Mathai one. The entropic index is \(q>1\) and in both cases \(R^2>0.99\). As the region is considered as a whole, the nonextensive statistical distribution is the more adequate one. With respect to probabilistic seismic hazard assessment, Mathai’s model proved to have the better fit. Thus, the frequency-interevent time distribution was used for different limit magnitude values. Our analysis showed that the probability occurrence of a seismic event in the region’s north is lower than in the south considering the same period. In the north the behavior is of Poissonian type.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.