Efficient Breast Cancer Dataset Analysis Based on Adaptive Classifiers

M. Al-Ani, Thikra Ali Kareem, Salwa Mohammed Nejres
{"title":"Efficient Breast Cancer Dataset Analysis Based on Adaptive Classifiers","authors":"M. Al-Ani, Thikra Ali Kareem, Salwa Mohammed Nejres","doi":"10.21928/uhdjst.v8n1y2024.pp122-128","DOIUrl":null,"url":null,"abstract":"Many algorithms have been used to diagnose diseases, with some demonstrating good performance while others have not met expectations. Making correct decisions with the minimal possible errors is of the highest priority when diagnosing diseases. Breast cancer, being a prevalent and widespread disease, emphasizes the importance of early detection. Accurate decision-making regarding breast cancer is crucial for early treatment and achieving favorable outcomes. The percentage split evaluation approach was employed, comparing performance metrics such as precision, recall, and f1-score. Kernel Naïve Bayes achieved 100% precision in the percentage split method for breast cancer, while the Coarse Gaussian support vector machines achieved 97.2% precision in classifying breast cancer in 4-fold cross-validation.","PeriodicalId":32983,"journal":{"name":"UHD Journal of Science and Technology","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UHD Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21928/uhdjst.v8n1y2024.pp122-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many algorithms have been used to diagnose diseases, with some demonstrating good performance while others have not met expectations. Making correct decisions with the minimal possible errors is of the highest priority when diagnosing diseases. Breast cancer, being a prevalent and widespread disease, emphasizes the importance of early detection. Accurate decision-making regarding breast cancer is crucial for early treatment and achieving favorable outcomes. The percentage split evaluation approach was employed, comparing performance metrics such as precision, recall, and f1-score. Kernel Naïve Bayes achieved 100% precision in the percentage split method for breast cancer, while the Coarse Gaussian support vector machines achieved 97.2% precision in classifying breast cancer in 4-fold cross-validation.
基于自适应分类器的高效乳腺癌数据集分析
许多算法已被用于诊断疾病,其中一些表现出良好的性能,而另一些则未达到预期。在诊断疾病时,最重要的是在误差最小的情况下做出正确的决定。乳腺癌是一种流行广泛的疾病,强调了早期检测的重要性。有关乳腺癌的准确决策对于早期治疗和取得良好疗效至关重要。我们采用了百分比分割评价方法,比较了精确度、召回率和 f1 分数等性能指标。在百分比分割法中,核奈伊夫贝叶斯对乳腺癌的分类精确度达到了 100%,而粗高斯支持向量机在 4 倍交叉验证中对乳腺癌的分类精确度达到了 97.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信