Jack W. Royle, David Hurwood, Pawel Sadowski, Kevin J. Dudley
{"title":"Non-CG DNA methylation marks the transition from pupa to adult in Helicoverpa armigera","authors":"Jack W. Royle, David Hurwood, Pawel Sadowski, Kevin J. Dudley","doi":"10.1111/imb.12917","DOIUrl":null,"url":null,"abstract":"<p>DNA methylation in insects is generally low in abundance, and its role is not well understood. It is often localised in protein coding regions and associated with the expression of ‘housekeeping’ genes. Few studies have explored DNA methylation dynamics during lifecycle stage transitions in holometabolous (metamorphosing) insects. Using targeted mass spectrometry, we have found a significant difference in global DNA methylation levels between larvae, pupae and adults of <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae) Hübner, a polyphagous pest of agricultural importance. Whole-genome bisulfite sequencing confirmed these observations and pointed to non-CG context being the primary explanation for the difference observed between pupa and adult. Non-CG methylation was enriched in genes specific to various signalling pathways (Hippo signalling, Hedgehog signalling and mitogen-activated protein kinase (MAPK) signalling) and ATP-dependent chromatin remodelling. Understanding the function of this epigenetic mark could be a target in future studies focusing on integrated pest management.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 5","pages":"493-502"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12917","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12917","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methylation in insects is generally low in abundance, and its role is not well understood. It is often localised in protein coding regions and associated with the expression of ‘housekeeping’ genes. Few studies have explored DNA methylation dynamics during lifecycle stage transitions in holometabolous (metamorphosing) insects. Using targeted mass spectrometry, we have found a significant difference in global DNA methylation levels between larvae, pupae and adults of Helicoverpa armigera (Lepidoptera: Noctuidae) Hübner, a polyphagous pest of agricultural importance. Whole-genome bisulfite sequencing confirmed these observations and pointed to non-CG context being the primary explanation for the difference observed between pupa and adult. Non-CG methylation was enriched in genes specific to various signalling pathways (Hippo signalling, Hedgehog signalling and mitogen-activated protein kinase (MAPK) signalling) and ATP-dependent chromatin remodelling. Understanding the function of this epigenetic mark could be a target in future studies focusing on integrated pest management.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).