{"title":"The Grading System for Lung Adenocarcinoma: Brief Review of its Prognostic Performance and Future Directions.","authors":"Jose G Mantilla, Andre L Moreira","doi":"10.1097/PAP.0000000000000452","DOIUrl":null,"url":null,"abstract":"Histologic grading of tumors is associated with prognosis in many organs. In the lung, the most recent grading system proposed by International association for the Study of Lung Cancer (IASLC) and adopted by the World Health Organization (WHO) incorporates the predominant histologic pattern, as well as the presence of high-grade architectural patterns (solid, micropapillary, and complex glandular pattern) in proportions >20% of the tumor surface. This system has shown improved prognostic ability when compared with the prior grading system based on the predominant pattern alone, across different patient populations. Interobserver agreement is moderate to excellent, depending on the study. IASLC/WHO grading system has been shown to correlate with molecular alterations and PD-L1 expression in tumor cells. Recent studies interrogating gene expression has shown correlation with tumor grade and molecular alterations in the tumor microenvironment that can further stratify risk of recurrence. The use of machine learning algorithms to grade nonmucinous adenocarcinoma under this system has shown accuracy comparable to that of expert pulmonary pathologists. Future directions include evaluation of tumor grade in the context of adjuvant and neoadjuvant therapies, as well as the development of better prognostic indicators for mucinous adenocarcinoma.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAP.0000000000000452","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Histologic grading of tumors is associated with prognosis in many organs. In the lung, the most recent grading system proposed by International association for the Study of Lung Cancer (IASLC) and adopted by the World Health Organization (WHO) incorporates the predominant histologic pattern, as well as the presence of high-grade architectural patterns (solid, micropapillary, and complex glandular pattern) in proportions >20% of the tumor surface. This system has shown improved prognostic ability when compared with the prior grading system based on the predominant pattern alone, across different patient populations. Interobserver agreement is moderate to excellent, depending on the study. IASLC/WHO grading system has been shown to correlate with molecular alterations and PD-L1 expression in tumor cells. Recent studies interrogating gene expression has shown correlation with tumor grade and molecular alterations in the tumor microenvironment that can further stratify risk of recurrence. The use of machine learning algorithms to grade nonmucinous adenocarcinoma under this system has shown accuracy comparable to that of expert pulmonary pathologists. Future directions include evaluation of tumor grade in the context of adjuvant and neoadjuvant therapies, as well as the development of better prognostic indicators for mucinous adenocarcinoma.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.