{"title":"Hypoxia-inducible factor-1α in myocardial infarction","authors":"Ivana Škrlec, Sergey N Kolomeichuk","doi":"10.4330/wjc.v16.i4.181","DOIUrl":null,"url":null,"abstract":"Hypoxia-inducible factor 1 (HIF1) has a crucial function in the regulation of oxygen levels in mammalian cells, especially under hypoxic conditions. Its importance in cardiovascular diseases, particularly in cardiac ischemia, is because of its ability to alleviate cardiac dysfunction. The oxygen-responsive subunit, HIF1α, plays a crucial role in this process, as it has been shown to have cardioprotective effects in myocardial infarction through regulating the expression of genes affecting cellular survival, angiogenesis, and metabolism. Furthermore, HIF1α expression induced reperfusion in the ischemic skeletal muscle, and hypoxic skin wounds in diabetic animal models showed reduced HIF1α expression. Increased expression of HIF1α has been shown to reduce apoptosis and oxidative stress in cardiomyocytes during acute myocardial infarction. Genetic variations in HIF1α have also been found to correlate with altered responses to ischemic cardiovascular disease. In addition, a link has been established between the circadian rhythm and hypoxic molecular signaling pathways, with HIF1α functioning as an oxygen sensor and circadian genes such as period circadian regulator 2 responding to changes in light. This editorial analyzes the relationship between HIF1α and the circadian rhythm and highlights its significance in myocardial adaptation to hypoxia. Understanding the changes in molecular signaling pathways associated with diseases, specifically cardiovascular diseases, provides the opportunity for innovative therapeutic interventions, especially in low-oxygen environments such as myocardial infarction.","PeriodicalId":23800,"journal":{"name":"World Journal of Cardiology","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4330/wjc.v16.i4.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxia-inducible factor 1 (HIF1) has a crucial function in the regulation of oxygen levels in mammalian cells, especially under hypoxic conditions. Its importance in cardiovascular diseases, particularly in cardiac ischemia, is because of its ability to alleviate cardiac dysfunction. The oxygen-responsive subunit, HIF1α, plays a crucial role in this process, as it has been shown to have cardioprotective effects in myocardial infarction through regulating the expression of genes affecting cellular survival, angiogenesis, and metabolism. Furthermore, HIF1α expression induced reperfusion in the ischemic skeletal muscle, and hypoxic skin wounds in diabetic animal models showed reduced HIF1α expression. Increased expression of HIF1α has been shown to reduce apoptosis and oxidative stress in cardiomyocytes during acute myocardial infarction. Genetic variations in HIF1α have also been found to correlate with altered responses to ischemic cardiovascular disease. In addition, a link has been established between the circadian rhythm and hypoxic molecular signaling pathways, with HIF1α functioning as an oxygen sensor and circadian genes such as period circadian regulator 2 responding to changes in light. This editorial analyzes the relationship between HIF1α and the circadian rhythm and highlights its significance in myocardial adaptation to hypoxia. Understanding the changes in molecular signaling pathways associated with diseases, specifically cardiovascular diseases, provides the opportunity for innovative therapeutic interventions, especially in low-oxygen environments such as myocardial infarction.