Manipulation of Nonradiative Process Based on the Aggregation Microenvironment to Customize Excited-State Energy Conversion

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guan Wang, Ben Zhong Tang and Xinggui Gu*, 
{"title":"Manipulation of Nonradiative Process Based on the Aggregation Microenvironment to Customize Excited-State Energy Conversion","authors":"Guan Wang,&nbsp;Ben Zhong Tang and Xinggui Gu*,&nbsp;","doi":"10.1021/acs.accounts.4c00071","DOIUrl":null,"url":null,"abstract":"<p >Nonradiative processes with the determined role in excited-state energy conversion, such as internal conversion (IC), vibrational relaxation (VR), intersystem crossing (ISC), and energy or electron transfer (ET or eT), have exerted a crucial effect on biological functions in nature. Inspired by these, nonradiative process manipulation has been extensively utilized to develop organic functional materials in the fields of energy and biomedicine. Therefore, comprehensive knowledge and effective manipulation of sophisticated nonradiative processes for achieving high-efficiency excited-state energy conversion are quintessential. So far, many strategies focused on molecular engineering have demonstrated tremendous potential in manipulating nonradiative processes to tailor excited-state energy conversion. Besides, molecular aggregation considerably affects nonradiative processes due to their ultrasensitivity, thus providing us with another essential approach to manipulating nonradiative processes, such as the famous aggregation-induced emission. However, the weak interactions established upon aggregation, namely, the aggregation microenvironment (AME), possess hierarchical, dynamic, and systemic characteristics and are extremely complicated to elucidate. Revealing the relationship between the AME and nonradiative process and employing it to customize excited-state energy conversion would greatly promote advanced materials in energy utilization, biomedicine, etc., but remain a huge challenge. Our group has devoted much effort to achieving this goal.</p><p >In this Account, we focus on our recent developments in nonradiative process manipulation based on AME. First, we provide insight into the effect of the AME on nonradiative process in terms of its steric effect and electronic regulation, illustrating the possibility of nonradiative process manipulation through AME modulation. Second, the distinct enhanced steric effect is established by crystallization and heterogeneous polymerization to conduct crystallization-induced reversal from dark to bright excited states and dynamic hardening-triggered nonradiative process suppression for highly efficient luminescence. Meanwhile, promoting the ISC process and stabilizing the triplet state are also manipulated by the crystal and polymer matrix to induce room-temperature phosphorescence. Furthermore, the strategies employed to exploit nonradiative processes for photothermy and photosensitization are reviewed. For photothermal conversion, besides the weakened steric effect with promoted molecular motions, a new strategy involving the introduction of diradicals upon aggregation to narrow the energy band gap and enhance intermolecular interactions is put forward to facilitate IC and VR for high-efficiency photothermal conversion. For photosensitization, both the enhanced steric effect from the rigid matrix and the effective electronic regulation from the electron-rich microenvironment are demonstrated to facilitate ISC, ET, and eT for superior photosensitization. Finally, we explore the existing challenges and future directions of nonradiative process manipulation by AME modulation for customized excited-state energy conversion. We hope that this Account will be of wide interest to readers from different disciplines.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"57 9","pages":"1360–1371"},"PeriodicalIF":17.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.accounts.4c00071","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nonradiative processes with the determined role in excited-state energy conversion, such as internal conversion (IC), vibrational relaxation (VR), intersystem crossing (ISC), and energy or electron transfer (ET or eT), have exerted a crucial effect on biological functions in nature. Inspired by these, nonradiative process manipulation has been extensively utilized to develop organic functional materials in the fields of energy and biomedicine. Therefore, comprehensive knowledge and effective manipulation of sophisticated nonradiative processes for achieving high-efficiency excited-state energy conversion are quintessential. So far, many strategies focused on molecular engineering have demonstrated tremendous potential in manipulating nonradiative processes to tailor excited-state energy conversion. Besides, molecular aggregation considerably affects nonradiative processes due to their ultrasensitivity, thus providing us with another essential approach to manipulating nonradiative processes, such as the famous aggregation-induced emission. However, the weak interactions established upon aggregation, namely, the aggregation microenvironment (AME), possess hierarchical, dynamic, and systemic characteristics and are extremely complicated to elucidate. Revealing the relationship between the AME and nonradiative process and employing it to customize excited-state energy conversion would greatly promote advanced materials in energy utilization, biomedicine, etc., but remain a huge challenge. Our group has devoted much effort to achieving this goal.

In this Account, we focus on our recent developments in nonradiative process manipulation based on AME. First, we provide insight into the effect of the AME on nonradiative process in terms of its steric effect and electronic regulation, illustrating the possibility of nonradiative process manipulation through AME modulation. Second, the distinct enhanced steric effect is established by crystallization and heterogeneous polymerization to conduct crystallization-induced reversal from dark to bright excited states and dynamic hardening-triggered nonradiative process suppression for highly efficient luminescence. Meanwhile, promoting the ISC process and stabilizing the triplet state are also manipulated by the crystal and polymer matrix to induce room-temperature phosphorescence. Furthermore, the strategies employed to exploit nonradiative processes for photothermy and photosensitization are reviewed. For photothermal conversion, besides the weakened steric effect with promoted molecular motions, a new strategy involving the introduction of diradicals upon aggregation to narrow the energy band gap and enhance intermolecular interactions is put forward to facilitate IC and VR for high-efficiency photothermal conversion. For photosensitization, both the enhanced steric effect from the rigid matrix and the effective electronic regulation from the electron-rich microenvironment are demonstrated to facilitate ISC, ET, and eT for superior photosensitization. Finally, we explore the existing challenges and future directions of nonradiative process manipulation by AME modulation for customized excited-state energy conversion. We hope that this Account will be of wide interest to readers from different disciplines.

Abstract Image

Abstract Image

基于聚合微环境操纵非辐射过程,定制激发态能量转换
在激发态能量转换中起决定性作用的非辐射过程,如内部转换(IC)、振动弛豫(VR)、系统间交叉(ISC)和能量或电子转移(ET 或 eT),对自然界中的生物功能产生了至关重要的影响。受其启发,非辐射过程操作已被广泛用于开发能源和生物医学领域的有机功能材料。因此,全面了解并有效操纵复杂的非辐射过程以实现高效激发态能量转换至关重要。迄今为止,许多以分子工程为重点的策略已证明,在操纵非辐射过程以定制激发态能量转换方面具有巨大潜力。此外,分子聚集因其超敏性而对非辐射过程产生很大影响,从而为我们提供了另一种操纵非辐射过程的重要方法,如著名的聚集诱导发射。然而,聚集时建立的微弱相互作用,即聚集微环境(AME),具有层次性、动态性和系统性等特点,要阐明这些特点极其复杂。揭示 AME 与非辐射过程之间的关系,并将其用于定制激发态能量转换,将极大地促进先进材料在能源利用、生物医学等领域的应用,但仍然是一个巨大的挑战。我们的研究小组为实现这一目标付出了大量努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信