Carbon sequestration costs and spatial spillover effects in China's collective forests

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yifan Zhou, Caixia Xue, Shuohua Liu, Jinrong Zhang
{"title":"Carbon sequestration costs and spatial spillover effects in China's collective forests","authors":"Yifan Zhou,&nbsp;Caixia Xue,&nbsp;Shuohua Liu,&nbsp;Jinrong Zhang","doi":"10.1186/s13021-024-00261-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Global climate change is one of the major challenges facing the world today, and forests play a crucial role as significant carbon sinks and providers of ecosystem services in mitigating climate change and protecting the environment. China, as one of the largest developing countries globally, owns 60% of its forest resources collectively. Evaluating the carbon sequestration cost of collective forests not only helps assess the contribution of China’s forest resources to global climate change mitigation but also provides important evidence for formulating relevant policies and measures.</p><h3>Results</h3><p>Over the past 30 years, the carbon sequestration cost of collective forests in China has shown an overall upward trend. Except for coastal provinces, southern collective forest areas, as well as some southwestern and northeastern regions, have the advantage of lower carbon sequestration costs. Furthermore, LSTM network predictions indicate that the carbon sequestration cost of collective forests in China will continue to rise. By 2030, the average carbon sequestration cost of collective forests is projected to reach 125 CNY per ton(= 16.06 Euros/t). Additionally, there is spatial correlation in the carbon sequestration cost of collective forests. Timber production, labor costs, and labor prices have negative spatial spillover effects on carbon sequestration costs, while land opportunity costs, forest accumulation, and rural resident consumption have positive spatial spillover effects.</p><h3>Conclusion</h3><p>The results of this study indicate regional disparities in the spatial distribution of carbon sequestration costs of collective forests, with an undeniable upward trend in future cost growth. It is essential to focus on areas with lower carbon sequestration costs and formulate targeted carbon sink economic policies and management measures to maximize the carbon sequestration potential of collective forests and promote the sustainable development of forestry.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00261-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00261-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Global climate change is one of the major challenges facing the world today, and forests play a crucial role as significant carbon sinks and providers of ecosystem services in mitigating climate change and protecting the environment. China, as one of the largest developing countries globally, owns 60% of its forest resources collectively. Evaluating the carbon sequestration cost of collective forests not only helps assess the contribution of China’s forest resources to global climate change mitigation but also provides important evidence for formulating relevant policies and measures.

Results

Over the past 30 years, the carbon sequestration cost of collective forests in China has shown an overall upward trend. Except for coastal provinces, southern collective forest areas, as well as some southwestern and northeastern regions, have the advantage of lower carbon sequestration costs. Furthermore, LSTM network predictions indicate that the carbon sequestration cost of collective forests in China will continue to rise. By 2030, the average carbon sequestration cost of collective forests is projected to reach 125 CNY per ton(= 16.06 Euros/t). Additionally, there is spatial correlation in the carbon sequestration cost of collective forests. Timber production, labor costs, and labor prices have negative spatial spillover effects on carbon sequestration costs, while land opportunity costs, forest accumulation, and rural resident consumption have positive spatial spillover effects.

Conclusion

The results of this study indicate regional disparities in the spatial distribution of carbon sequestration costs of collective forests, with an undeniable upward trend in future cost growth. It is essential to focus on areas with lower carbon sequestration costs and formulate targeted carbon sink economic policies and management measures to maximize the carbon sequestration potential of collective forests and promote the sustainable development of forestry.

中国集体林的固碳成本和空间溢出效应
背景全球气候变化是当今世界面临的主要挑战之一,而森林作为重要的碳汇和生态系统服务的提供者,在减缓气候变化和保护环境方面发挥着至关重要的作用。作为全球最大的发展中国家之一,中国拥有 60% 的森林资源。对集体林碳汇成本进行评估,不仅有助于评估中国森林资源对减缓全球气候变化的贡献,也为制定相关政策和措施提供了重要依据。结果近 30 年来,中国集体林碳汇成本总体呈上升趋势。除沿海省份外,南方集体林区以及西南、东北部分地区具有固碳成本较低的优势。此外,LSTM 网络预测表明,中国集体林的碳汇成本将继续上升。预计到 2030 年,集体林的平均碳汇成本将达到 125 元人民币/吨(=16.06 欧元/吨)。此外,集体林的碳汇成本还存在空间相关性。木材生产、劳动力成本和劳动力价格对碳封存成本具有负的空间溢出效应,而土地机会成本、森林蓄积量和农村居民消费对碳封存成本具有正的空间溢出效应。应重点关注固碳成本较低的地区,制定有针对性的碳汇经济政策和管理措施,最大限度地发挥集体林的固碳潜力,促进林业的可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信