Hamed Ghomashchi , Jakson Paterson , Alison C. Novak , Tilak Dutta
{"title":"Estimating pedestrian walking speed at street crossings using the YOLOv4 and deep SORT algorithms: Proof of principle","authors":"Hamed Ghomashchi , Jakson Paterson , Alison C. Novak , Tilak Dutta","doi":"10.1016/j.apergo.2024.104292","DOIUrl":null,"url":null,"abstract":"<div><p>There is evidence that existing standards for signal timing do not provide enough time for many pedestrians to safely cross intersections. Yet, current methods for studying this problem rely on inefficient manual observations. The objective of this work was to determine if the YOLOv4 and Deep SORT computer vision algorithms have the potential to be incorporated into automated measurement systems to measure and compare pedestrian walking speeds at one-stage and two-stage street crossings captured in birds-eye-view video. Walking speed was estimated for 1018 pedestrians at single-stage (591 pedestrians) and two-stage (427 pedestrians) street crossings. Pedestrians in the one-stage crossing were found to be significantly slower than pedestrians who crossed the two-stage crossing in one signal (<em>1.19 ± 0.50 vs. 1.31 ± 0.</em>49 m/s<em>, p < 0.001</em>). This proof of principle study demonstrated that the YOLOv4 and Deep SORT approaches are promising for estimating pedestrian walking speed.</p></div>","PeriodicalId":55502,"journal":{"name":"Applied Ergonomics","volume":"119 ","pages":"Article 104292"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003687024000693/pdfft?md5=fb145fb1c5e98b5270b08ddbbe8af82f&pid=1-s2.0-S0003687024000693-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003687024000693","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is evidence that existing standards for signal timing do not provide enough time for many pedestrians to safely cross intersections. Yet, current methods for studying this problem rely on inefficient manual observations. The objective of this work was to determine if the YOLOv4 and Deep SORT computer vision algorithms have the potential to be incorporated into automated measurement systems to measure and compare pedestrian walking speeds at one-stage and two-stage street crossings captured in birds-eye-view video. Walking speed was estimated for 1018 pedestrians at single-stage (591 pedestrians) and two-stage (427 pedestrians) street crossings. Pedestrians in the one-stage crossing were found to be significantly slower than pedestrians who crossed the two-stage crossing in one signal (1.19 ± 0.50 vs. 1.31 ± 0.49 m/s, p < 0.001). This proof of principle study demonstrated that the YOLOv4 and Deep SORT approaches are promising for estimating pedestrian walking speed.
期刊介绍:
Applied Ergonomics is aimed at ergonomists and all those interested in applying ergonomics/human factors in the design, planning and management of technical and social systems at work or leisure. Readership is truly international with subscribers in over 50 countries. Professionals for whom Applied Ergonomics is of interest include: ergonomists, designers, industrial engineers, health and safety specialists, systems engineers, design engineers, organizational psychologists, occupational health specialists and human-computer interaction specialists.