{"title":"Controlled in-situ reduction strategy for synthesis of transparent conductive metal meshes using tannic acid-based photoresists","authors":"Xubin Guo, Huan Chen, Haihua Wang, Dong Wang, Qianqian Wang, Wenbing Kang","doi":"10.1016/j.mee.2024.112196","DOIUrl":null,"url":null,"abstract":"<div><p>Transparent conductive films (TCFs) that converge high transmittance and high conductive properties are essential for many optoelectronic devices, and efforts have been made to acquire films with high transmittance as well as low resistance of the thin layer by low-cost means. Here, we introduce a novel and simple strategy for the controlled <em>in-situ</em> templated synthesis of a transparent conductive metal mesh by utilizing the good reducibility to silver ions of the patterned tannic acid (TA)-based photoresists. To achieve this, mesh patterns with tunable line width were first printed using the TA-based negative photoresists by laser direct writing equipment. Within the patterned domains, the phenolic hydroxyl groups could interact with metal ions and act as reducing agents, thus accelerating the <em>in-situ</em> growth of silver nanoparticles to fabricate silver grids. By changing the line width of the designed patterns and the PH of the plating solution, the metal grids with a high transmission (<em>T</em>) of 91.5% and a thin-layer resistance (<em>R</em><sub>s</sub>) as low as 4.15 Ω sq.<sup>−1</sup> are ultimately achieved after annealing treatment. Our description demonstrates a simple and effective approach that is potentially scalable to other materials as well.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000650","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Transparent conductive films (TCFs) that converge high transmittance and high conductive properties are essential for many optoelectronic devices, and efforts have been made to acquire films with high transmittance as well as low resistance of the thin layer by low-cost means. Here, we introduce a novel and simple strategy for the controlled in-situ templated synthesis of a transparent conductive metal mesh by utilizing the good reducibility to silver ions of the patterned tannic acid (TA)-based photoresists. To achieve this, mesh patterns with tunable line width were first printed using the TA-based negative photoresists by laser direct writing equipment. Within the patterned domains, the phenolic hydroxyl groups could interact with metal ions and act as reducing agents, thus accelerating the in-situ growth of silver nanoparticles to fabricate silver grids. By changing the line width of the designed patterns and the PH of the plating solution, the metal grids with a high transmission (T) of 91.5% and a thin-layer resistance (Rs) as low as 4.15 Ω sq.−1 are ultimately achieved after annealing treatment. Our description demonstrates a simple and effective approach that is potentially scalable to other materials as well.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.