{"title":"NMR insights into β-Lactamase activity of UVI31+ Protein from Chlamydomonas reinhardtii","authors":"Ashok K. Rout , Saurabh Gautam , Vipin Kumar Mishra , Mandar Bopardikar , Budheswar Dehury , Himanshu Singh","doi":"10.1016/j.jmr.2024.107689","DOIUrl":null,"url":null,"abstract":"<div><p>β-Lactamases (EC 3.5.2.6) confer resistance against β-lactam group-containing antibiotics in bacteria and higher eukaryotes, including humans. Pathogenic bacterial resistance against β-lactam antibiotics is a primary concern for potential therapeutic developments and drug targets. Here, we report putative β-lactamase activity, sulbactam binding (a β-lactam analogue) in the low μM affinity range, and site-specific interaction studies of a 14 kDa UV- and dark-inducible protein (abbreviated as UVI31+, a BolA homologue) from <em>Chlamydomonas reinhartii</em>. Intriguingly, the solution NMR structure of UVI31 + bears no resemblance to other known β-lactamases; however, the sulbactam binding is found at two sites rich in positively charged residues, mainly at the L2 loop regions and the N-terminus. Using NMR spectroscopy, ITC and MD simulations, we map the ligand binding sites in UVI31 + providing atomic-level insights into its β-lactamase activity. Current study is the first report on β-lactamase activity of UVI31+, a BolA analogue, from <em>C. reinhartii</em>. Furthermore, our mutation studies reveal that the active site serine-55 is crucial for β-lactamase activity.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"362 ","pages":"Article 107689"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000739","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
β-Lactamases (EC 3.5.2.6) confer resistance against β-lactam group-containing antibiotics in bacteria and higher eukaryotes, including humans. Pathogenic bacterial resistance against β-lactam antibiotics is a primary concern for potential therapeutic developments and drug targets. Here, we report putative β-lactamase activity, sulbactam binding (a β-lactam analogue) in the low μM affinity range, and site-specific interaction studies of a 14 kDa UV- and dark-inducible protein (abbreviated as UVI31+, a BolA homologue) from Chlamydomonas reinhartii. Intriguingly, the solution NMR structure of UVI31 + bears no resemblance to other known β-lactamases; however, the sulbactam binding is found at two sites rich in positively charged residues, mainly at the L2 loop regions and the N-terminus. Using NMR spectroscopy, ITC and MD simulations, we map the ligand binding sites in UVI31 + providing atomic-level insights into its β-lactamase activity. Current study is the first report on β-lactamase activity of UVI31+, a BolA analogue, from C. reinhartii. Furthermore, our mutation studies reveal that the active site serine-55 is crucial for β-lactamase activity.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.