Counting deranged matchings

IF 1 3区 数学 Q1 MATHEMATICS
Sam Spiro , Erlang Surya
{"title":"Counting deranged matchings","authors":"Sam Spiro ,&nbsp;Erlang Surya","doi":"10.1016/j.ejc.2024.103980","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>pm</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the number of perfect matchings of a graph <span><math><mi>G</mi></math></span>, and let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub></math></span> denote the complete <span><math><mi>r</mi></math></span>-partite graph where each part has size <span><math><mrow><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></math></span>. Johnson, Kayll, and Palmer conjectured that for any perfect matching <span><math><mi>M</mi></math></span> of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub></math></span>, we have for <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> divisible by <span><math><mi>r</mi></math></span>\n<span><span><span><math><mrow><mfrac><mrow><mi>pm</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub><mo>−</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mi>pm</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow></mrow></mfrac><mo>∼</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>r</mi><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup><mo>.</mo></mrow></math></span></span></span>This conjecture can be viewed as a common generalization of counting the number of derangements on <span><math><mi>n</mi></math></span> letters, and of counting the number of deranged matchings of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>. We prove this conjecture. In fact, we prove the stronger result that if <span><math><mi>R</mi></math></span> is a uniformly random perfect matching of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub></math></span>, then the number of edges that <span><math><mi>R</mi></math></span> has in common with <span><math><mi>M</mi></math></span> converges to a Poisson distribution with parameter <span><math><mfrac><mrow><mi>r</mi></mrow><mrow><mn>2</mn><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000659/pdfft?md5=c66422b992cbbf0765bc7eba3abcde93&pid=1-s2.0-S0195669824000659-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000659","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let pm(G) denote the number of perfect matchings of a graph G, and let Kr×2n/r denote the complete r-partite graph where each part has size 2n/r. Johnson, Kayll, and Palmer conjectured that for any perfect matching M of Kr×2n/r, we have for 2n divisible by r pm(Kr×2n/rM)pm(Kr×2n/r)er/(2r2).This conjecture can be viewed as a common generalization of counting the number of derangements on n letters, and of counting the number of deranged matchings of K2n. We prove this conjecture. In fact, we prove the stronger result that if R is a uniformly random perfect matching of Kr×2n/r, then the number of edges that R has in common with M converges to a Poisson distribution with parameter r2r2.

计算疯狂的匹配
让 pm(G) 表示图 G 的完全匹配数,让 Kr×2n/r 表示完整的 r 部分图,其中每个部分的大小为 2n/r。约翰逊、凯尔和帕尔默猜想,对于 Kr×2n/r 的任何完全匹配 M,我们有对于除以 rpm(Kr×2n/r-M)pm(Kr×2n/r)∼e-r/(2r-2) 的 2n 的猜想。这个猜想可以看作是计算 n 个字母上的错配数和计算 K2n 的错配数的普通概括。我们证明了这一猜想。事实上,我们证明了一个更强的结果:如果 R 是 Kr×2n/r 的均匀随机完美匹配,那么 R 与 M 共有的边的数量收敛于参数为 r2r-2 的泊松分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信