{"title":"Counting deranged matchings","authors":"Sam Spiro , Erlang Surya","doi":"10.1016/j.ejc.2024.103980","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>pm</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the number of perfect matchings of a graph <span><math><mi>G</mi></math></span>, and let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub></math></span> denote the complete <span><math><mi>r</mi></math></span>-partite graph where each part has size <span><math><mrow><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></math></span>. Johnson, Kayll, and Palmer conjectured that for any perfect matching <span><math><mi>M</mi></math></span> of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub></math></span>, we have for <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> divisible by <span><math><mi>r</mi></math></span>\n<span><span><span><math><mrow><mfrac><mrow><mi>pm</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub><mo>−</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mi>pm</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow></mrow></mfrac><mo>∼</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>r</mi><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup><mo>.</mo></mrow></math></span></span></span>This conjecture can be viewed as a common generalization of counting the number of derangements on <span><math><mi>n</mi></math></span> letters, and of counting the number of deranged matchings of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>. We prove this conjecture. In fact, we prove the stronger result that if <span><math><mi>R</mi></math></span> is a uniformly random perfect matching of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>×</mo><mn>2</mn><mi>n</mi><mo>/</mo><mi>r</mi></mrow></msub></math></span>, then the number of edges that <span><math><mi>R</mi></math></span> has in common with <span><math><mi>M</mi></math></span> converges to a Poisson distribution with parameter <span><math><mfrac><mrow><mi>r</mi></mrow><mrow><mn>2</mn><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000659/pdfft?md5=c66422b992cbbf0765bc7eba3abcde93&pid=1-s2.0-S0195669824000659-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000659","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the number of perfect matchings of a graph , and let denote the complete -partite graph where each part has size . Johnson, Kayll, and Palmer conjectured that for any perfect matching of , we have for divisible by
This conjecture can be viewed as a common generalization of counting the number of derangements on letters, and of counting the number of deranged matchings of . We prove this conjecture. In fact, we prove the stronger result that if is a uniformly random perfect matching of , then the number of edges that has in common with converges to a Poisson distribution with parameter .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.