Visa Isteri , Katja Ohenoja , Christiane Rößler , Holger Kletti , Pekka Tanskanen , Mirja Illikainen , Theodore Hanein , Timo Fabritius
{"title":"The effect of slag variability in the attempted manufacture of AYF (alite-ye'elimite-ferrite) cement clinker at both laboratory and pilot scale","authors":"Visa Isteri , Katja Ohenoja , Christiane Rößler , Holger Kletti , Pekka Tanskanen , Mirja Illikainen , Theodore Hanein , Timo Fabritius","doi":"10.1016/j.cement.2024.100098","DOIUrl":null,"url":null,"abstract":"<div><p>The production of AYF (alite-ye'elimite-ferrite) clinker was tested at laboratory and semi-industrial scale using by-products from the metallurgical industry: AOD slag; ladle slag; and fayalitic slag. Alite could be produced with ye'elimite using fluorine originating from AOD (argon oxygen decarburisation) slag as a mineraliser. After a successful laboratory demonstration, the clinker production was scaled to a semi-industrial trial. It was discovered that the reason for the absence of alite formation in a semi-industrial demonstration was that the AOD slag from the specific batch did not perform the designed mineralisation effect for alite formation. This study demonstrates that alite-ye'elimite can be produced at 1260 °C at laboratory scale by using fluorine mineralisation originating from an industrial by-product – in this case, AOD slag. However, the utilisation of by-products for delicate reactions requires detailed determination of the properties of the slag, as the variability from the same source yields different clinker chemistries and mineral phases.</p></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"16 ","pages":"Article 100098"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666549224000070/pdfft?md5=78d9fe6638c10b01bdf212196bf38837&pid=1-s2.0-S2666549224000070-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549224000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The production of AYF (alite-ye'elimite-ferrite) clinker was tested at laboratory and semi-industrial scale using by-products from the metallurgical industry: AOD slag; ladle slag; and fayalitic slag. Alite could be produced with ye'elimite using fluorine originating from AOD (argon oxygen decarburisation) slag as a mineraliser. After a successful laboratory demonstration, the clinker production was scaled to a semi-industrial trial. It was discovered that the reason for the absence of alite formation in a semi-industrial demonstration was that the AOD slag from the specific batch did not perform the designed mineralisation effect for alite formation. This study demonstrates that alite-ye'elimite can be produced at 1260 °C at laboratory scale by using fluorine mineralisation originating from an industrial by-product – in this case, AOD slag. However, the utilisation of by-products for delicate reactions requires detailed determination of the properties of the slag, as the variability from the same source yields different clinker chemistries and mineral phases.