An upstream signaling gene calmodulin regulates the synthesis of insect wax via activating fatty acid biosynthesis pathway

IF 3.2 2区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Min Li , Shuo Yan , Xinying Feng, Qinhong Jiang, Mei Guan, Jie Shen, Zhiqi Liu
{"title":"An upstream signaling gene calmodulin regulates the synthesis of insect wax via activating fatty acid biosynthesis pathway","authors":"Min Li ,&nbsp;Shuo Yan ,&nbsp;Xinying Feng,&nbsp;Qinhong Jiang,&nbsp;Mei Guan,&nbsp;Jie Shen,&nbsp;Zhiqi Liu","doi":"10.1016/j.ibmb.2024.104126","DOIUrl":null,"url":null,"abstract":"<div><p>Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis. The wax glands were mainly located on the thorax and abdomen of dustywing adults. The adults spread the waxy secretions over their entire body surface. The metabolomics analysis identified 32 lipids and lipid-like molecules, 15 organic acids and derivatives, 7 benzenoids, etc. as the main components of waxy secretions. The fatty acids represented the largest proportion of the category of lipid and lipid-like molecules. The conjoint analysis of metabolomics and transcriptomics identified two crucial genes <em>fatty acyl-CoA reductase</em> (<em>CsFAR</em>) and <em>calmodulin</em> (<em>CsCaM</em>) for wax biosynthesis. The down-regulation of these genes via nanocarrier-mediated RNA interference technology significantly reduced the amount of wax particles. Notably, the RNAi of <em>CsCaM</em> apparently suppressed the expression of most genes in fatty acid biosynthesis pathway, indicating the <em>CsCaM</em> might act as a main upstream regulator of fatty acid biosynthesis pathway.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"169 ","pages":"Article 104126"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824000572","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis. The wax glands were mainly located on the thorax and abdomen of dustywing adults. The adults spread the waxy secretions over their entire body surface. The metabolomics analysis identified 32 lipids and lipid-like molecules, 15 organic acids and derivatives, 7 benzenoids, etc. as the main components of waxy secretions. The fatty acids represented the largest proportion of the category of lipid and lipid-like molecules. The conjoint analysis of metabolomics and transcriptomics identified two crucial genes fatty acyl-CoA reductase (CsFAR) and calmodulin (CsCaM) for wax biosynthesis. The down-regulation of these genes via nanocarrier-mediated RNA interference technology significantly reduced the amount of wax particles. Notably, the RNAi of CsCaM apparently suppressed the expression of most genes in fatty acid biosynthesis pathway, indicating the CsCaM might act as a main upstream regulator of fatty acid biosynthesis pathway.

Abstract Image

上游信号基因钙调蛋白通过激活脂肪酸生物合成途径调节昆虫蜡的合成
昆虫蜡积聚在昆虫角质层表面,是抵御雨水、紫外线辐射和病原体等的重要保护屏障。尘翅昆虫的蜡化行为、蜡的组成以及蜡生物合成的分子机制尚不清楚。本研究确定了尘翅蜡化行为的重要发育阶段,研究了蜡质分泌物的成分,并鉴定了蜡质生物合成的关键调控基因。蜡腺主要位于尘翅成虫的胸部和腹部。成虫将蜡状分泌物散布在整个体表。代谢组学分析发现,蜡状分泌物的主要成分包括 32 种脂类和类脂分子、15 种有机酸及其衍生物、7 种苯类化合物等。在脂类和类脂分子中,脂肪酸所占比例最大。代谢组学和转录组学的联合分析发现了蜡质生物合成的两个关键基因脂肪酰-CoA还原酶(CsFAR)和钙调素(CsCaM)。通过纳米载体介导的 RNA 干扰技术下调这些基因后,蜡颗粒的数量显著减少。值得注意的是,CsCaM的RNAi明显抑制了脂肪酸生物合成途径中大部分基因的表达,表明CsCaM可能是脂肪酸生物合成途径的主要上游调控因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
5.30%
发文量
105
审稿时长
40 days
期刊介绍: This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信