{"title":"On a Stokes hemivariational inequality for incompressible fluid flows with damping","authors":"Weimin Han , Hailong Qiu , Liquan Mei","doi":"10.1016/j.nonrwa.2024.104131","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a Stokes hemivariational inequality is studied for incompressible fluid flows with the damping effect. The hemivariational inequality feature is caused by the presence of a nonsmooth slip boundary condition of friction type. Well-posedness of the Stokes hemivariational inequality is established through the consideration of a minimization problem. Mixed finite element methods are introduced to solve the Stokes hemivariational inequality and error estimates are derived for the mixed finite element solutions. The error estimates are of optimal order for low-order mixed element pairs under suitable solution regularity assumptions. An efficient iterative algorithm is introduced to solve the mixed finite element system. Numerical results are reported on the performance of the proposed algorithm and the numerical convergence orders of the finite element solutions.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"79 ","pages":"Article 104131"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000713","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a Stokes hemivariational inequality is studied for incompressible fluid flows with the damping effect. The hemivariational inequality feature is caused by the presence of a nonsmooth slip boundary condition of friction type. Well-posedness of the Stokes hemivariational inequality is established through the consideration of a minimization problem. Mixed finite element methods are introduced to solve the Stokes hemivariational inequality and error estimates are derived for the mixed finite element solutions. The error estimates are of optimal order for low-order mixed element pairs under suitable solution regularity assumptions. An efficient iterative algorithm is introduced to solve the mixed finite element system. Numerical results are reported on the performance of the proposed algorithm and the numerical convergence orders of the finite element solutions.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.