Enriching surface-ordered defects on WO 3 for photocatalytic CO 2 -to-CH 4 conversion by water

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sikang Xue, Changgeng Wei, Min Shen, Xiaocong Liang, Jiali Wang, Can Yang, Wandong Xing, Sibo Wang, Wei Lin, Zhiyang Yu, Yidong Hou, Jimmy C. Yu, Xinchen Wang
{"title":"Enriching surface-ordered defects on WO 3 for photocatalytic CO 2 -to-CH 4 conversion by water","authors":"Sikang Xue, Changgeng Wei, Min Shen, Xiaocong Liang, Jiali Wang, Can Yang, Wandong Xing, Sibo Wang, Wei Lin, Zhiyang Yu, Yidong Hou, Jimmy C. Yu, Xinchen Wang","doi":"10.1073/pnas.2319751121","DOIUrl":null,"url":null,"abstract":"Defect engineering has been widely applied in semiconductors to improve photocatalytic properties by altering the surface structures. This study is about the transformation of inactive WO <jats:sub>3</jats:sub> nanosheets to a highly effective CO <jats:sub>2</jats:sub> -to-CH <jats:sub>4</jats:sub> conversion photocatalyst by introducing surface-ordered defects in abundance. The nonstoichiometric WO <jats:sub> 3- <jats:italic>x</jats:italic> </jats:sub> samples were examined by using aberration-corrected electron microscopy. Results unveil abundant surface-ordered terminations derived from the periodic {013} stacking faults with a defect density of 20.2%. The {002} surface-ordered line defects are the active sites for fixation CO <jats:sub>2</jats:sub> , transforming the inactive WO <jats:sub>3</jats:sub> nanosheets into a highly active catalyst (CH <jats:sub>4</jats:sub> : O <jats:sub>2</jats:sub> = 8.2: 16.7 μmol h <jats:sup>−1</jats:sup> ). We believe that the formation of the W-O-C-W-O species is a critical step in the catalytic pathways. This work provides an atomic-level comprehension of the structural defects of catalysts for activating small molecules.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2319751121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Defect engineering has been widely applied in semiconductors to improve photocatalytic properties by altering the surface structures. This study is about the transformation of inactive WO 3 nanosheets to a highly effective CO 2 -to-CH 4 conversion photocatalyst by introducing surface-ordered defects in abundance. The nonstoichiometric WO 3- x samples were examined by using aberration-corrected electron microscopy. Results unveil abundant surface-ordered terminations derived from the periodic {013} stacking faults with a defect density of 20.2%. The {002} surface-ordered line defects are the active sites for fixation CO 2 , transforming the inactive WO 3 nanosheets into a highly active catalyst (CH 4 : O 2 = 8.2: 16.7 μmol h −1 ). We believe that the formation of the W-O-C-W-O species is a critical step in the catalytic pathways. This work provides an atomic-level comprehension of the structural defects of catalysts for activating small molecules.
丰富 WO 3 表面有序缺陷,实现光催化水将 CO 2 转化为 CH 4
缺陷工程已被广泛应用于半导体领域,通过改变表面结构来改善光催化性能。本研究通过大量引入表面有序缺陷,将无活性的 WO 3 纳米片转化为高效的 CO 2 转化为 CH 4 光催化剂。我们使用像差校正电子显微镜对非全度 WO 3- x 样品进行了研究。结果揭示了大量的表面有序端点,这些端点来自周期性的{013}堆叠断层,缺陷密度为 20.2%。{002}表面有序线缺陷是固定 CO 2 的活性位点,将无活性的 WO 3 纳米片转化为高活性催化剂(CH 4 : O 2 = 8.2 : 16.7 μmol h -1 )。我们认为,W-O-C-W-O 物种的形成是催化途径中的关键一步。这项工作从原子水平上理解了活化小分子催化剂的结构缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信