Jinyu Sheng, Wojciech Danowski, Andy S. Sardjan, Jiaxin Hou, Stefano Crespi, Alexander Ryabchun, Maximilian Paradiz Domínguez, Wybren Jan Buma, Wesley R. Browne, Ben L. Feringa
{"title":"Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors","authors":"Jinyu Sheng, Wojciech Danowski, Andy S. Sardjan, Jiaxin Hou, Stefano Crespi, Alexander Ryabchun, Maximilian Paradiz Domínguez, Wybren Jan Buma, Wesley R. Browne, Ben L. Feringa","doi":"10.1038/s41557-024-01521-0","DOIUrl":null,"url":null,"abstract":"Artificial molecular motors and machines constitute a critical element in the transition from individual molecular motion to the creation of collective dynamic molecular systems and responsive materials. The design of artificial light-driven molecular motors operating with high efficiency and selectivity constitutes an ongoing fundamental challenge. Here we present a highly versatile synthetic approach based on Rieche formylation that boosts the quantum yield of the forward photoisomerization reaction while reaching near-perfect selectivity in the steps involved in the unidirectional rotary cycle and drastically reducing competing photoreactions. This motor is readily accessible in its enantiopure form and operates with nearly quantitative photoconversions. It can easily be functionalized further and outperforms its direct predecessor as a reconfigurable chiral dopant in cholesteric liquid crystal materials. Overcrowded alkene-derived molecular motors convert light and heat into chirality-directed unidirectional rotary motion, but the efficiency of their photochemical isomerization remains limited. Now formylation of the motor core has been shown to boost all aspects of motor photochemistry by improving photochemical efficiency, diminishing competing processes and redshifting absorption.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"16 8","pages":"1330-1338"},"PeriodicalIF":19.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41557-024-01521-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial molecular motors and machines constitute a critical element in the transition from individual molecular motion to the creation of collective dynamic molecular systems and responsive materials. The design of artificial light-driven molecular motors operating with high efficiency and selectivity constitutes an ongoing fundamental challenge. Here we present a highly versatile synthetic approach based on Rieche formylation that boosts the quantum yield of the forward photoisomerization reaction while reaching near-perfect selectivity in the steps involved in the unidirectional rotary cycle and drastically reducing competing photoreactions. This motor is readily accessible in its enantiopure form and operates with nearly quantitative photoconversions. It can easily be functionalized further and outperforms its direct predecessor as a reconfigurable chiral dopant in cholesteric liquid crystal materials. Overcrowded alkene-derived molecular motors convert light and heat into chirality-directed unidirectional rotary motion, but the efficiency of their photochemical isomerization remains limited. Now formylation of the motor core has been shown to boost all aspects of motor photochemistry by improving photochemical efficiency, diminishing competing processes and redshifting absorption.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.