Recovering p $p$ -adic valuations from pro- p $p$ Galois groups

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jochen Koenigsmann, Kristian Strommen
{"title":"Recovering \n \n p\n $p$\n -adic valuations from pro-\n \n p\n $p$\n Galois groups","authors":"Jochen Koenigsmann,&nbsp;Kristian Strommen","doi":"10.1112/jlms.12901","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> be a field with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>K</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <mo>≃</mo>\n <msub>\n <mi>G</mi>\n <msub>\n <mi>Q</mi>\n <mn>2</mn>\n </msub>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$G_K(2) \\simeq G_{\\mathbb {Q}_2}(2)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>F</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$G_F(2)$</annotation>\n </semantics></math> denotes the maximal pro-2 quotient of the absolute Galois group of a field <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>. We prove that then <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> admits a (non-trivial) valuation <span></span><math>\n <semantics>\n <mi>v</mi>\n <annotation>$v$</annotation>\n </semantics></math> which is 2-henselian and has residue field <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathbb {F}_2$</annotation>\n </semantics></math>. Furthermore, <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$v(2)$</annotation>\n </semantics></math> is a minimal positive element in the value group <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>v</mi>\n </msub>\n <annotation>$\\Gamma _v$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Γ</mi>\n <mi>v</mi>\n </msub>\n <mo>:</mo>\n <mn>2</mn>\n <msub>\n <mi>Γ</mi>\n <mi>v</mi>\n </msub>\n <mo>]</mo>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$[\\Gamma _v:2\\Gamma _v]=2$</annotation>\n </semantics></math>. This forms the first positive result on a more general conjecture about recovering <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-adic valuations from pro-<span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> Galois groups which we formulate precisely. As an application, we show how this result can be used to easily obtain number-theoretic information, by giving an independent proof of a strong version of the birational section conjecture for smooth, complete curves <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <msub>\n <mi>Q</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathbb {Q}_2$</annotation>\n </semantics></math>, as well as an analogue for varieties.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12901","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12901","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let K $K$ be a field with G K ( 2 ) G Q 2 ( 2 ) $G_K(2) \simeq G_{\mathbb {Q}_2}(2)$ , where G F ( 2 ) $G_F(2)$ denotes the maximal pro-2 quotient of the absolute Galois group of a field F $F$ . We prove that then K $K$ admits a (non-trivial) valuation v $v$ which is 2-henselian and has residue field F 2 $\mathbb {F}_2$ . Furthermore, v ( 2 ) $v(2)$ is a minimal positive element in the value group Γ v $\Gamma _v$ and [ Γ v : 2 Γ v ] = 2 $[\Gamma _v:2\Gamma _v]=2$ . This forms the first positive result on a more general conjecture about recovering p $p$ -adic valuations from pro- p $p$ Galois groups which we formulate precisely. As an application, we show how this result can be used to easily obtain number-theoretic information, by giving an independent proof of a strong version of the birational section conjecture for smooth, complete curves X $X$ over Q 2 $\mathbb {Q}_2$ , as well as an analogue for varieties.

Abstract Image

从亲 p $p$ 伽罗瓦群中恢复 p $p$ 自定值
让 K $K$ 是一个具有 G K ( 2 ) ≃ G Q 2 ( 2 ) $G_K(2) \simeq G_{\mathbb {Q}_2}(2)$ 的域,其中 G F ( 2 ) $G_F(2)$ 表示域 F $F$ 的绝对伽罗瓦群的最大原-2 商。我们证明,K $K$ 存在一个(非微观的)估值 v $v$,它是 2-邻域的,并且有残差域 F 2 $\mathbb {F}_2$ 。此外,v ( 2 ) $v(2)$ 是值群 Γ v $\Gamma _v$ 中的最小正元素,并且 [ Γ v : 2 Γ v ] = 2 $[\Gamma _v:2\Gamma _v]=2$ 。这构成了关于从亲 p $p$ 伽罗瓦群中恢复 p $p$ -adic值的更一般猜想的第一个正面结果,我们精确地提出了这个猜想。作为应用,我们给出了对 Q 2 $\mathbb {Q}_2$ 上的光滑完整曲线 X $X$ 的双向截面猜想的强版本的独立证明,以及对变体的类似证明,从而展示了如何利用这一结果轻松获得数论信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信