Taylor S. Campbell, Katelyn Donoghue, Tania L. Roth
{"title":"Unlocking the epigenome: Stress and exercise induced Bdnf regulation in the prefrontal cortex","authors":"Taylor S. Campbell, Katelyn Donoghue, Tania L. Roth","doi":"10.1016/j.ntt.2024.107353","DOIUrl":null,"url":null,"abstract":"<div><p>Aversive caregiving in early life is a risk factor for aberrant brain and behavioral development. This outcome is related to epigenetic dysregulation of the brain-derived neurotrophic factor (<em>Bdnf</em>) gene. The <em>Bdnf</em> gene encodes for BDNF, a neurotrophin involved in early brain development, neural plasticity, learning, and memory. Recent work suggests that exercise may be neuroprotective in part by supporting BDNF protein and gene expression, making it an exciting target for therapeutic interventions. To our knowledge, exercise has never been studied as a therapeutic intervention in preclinical rodent models of caregiver maltreatment. To that end, the current study investigated the effect of an adult voluntary wheel running intervention on <em>Bdnf</em> methylation and expression in the prefrontal cortex of rats who experienced aversive caregiving in infancy. We employed a rodent model (Long Evans rats) wherein rat pups experienced intermittent caregiver-induced stress from postnatal days 1–7 and were given voluntary access to a running wheel (except in the control condition) from postnatal days 70–90 as a young adulthood treatment intervention. Our results indicate that maltreatment and exercise affect <em>Bdnf</em> gene methylation in an exon, CG site, and sex-specific manner. Here we add to a growing body of evidence of the ability for our experiences, including exercise, to permeate the brain. Keywords: Early life stress, Bdnf, exercise, prefrontal cortex.</p></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"103 ","pages":"Article 107353"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0892036224000357/pdfft?md5=9a91a4cc0d5697c51502f242d71dca60&pid=1-s2.0-S0892036224000357-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036224000357","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aversive caregiving in early life is a risk factor for aberrant brain and behavioral development. This outcome is related to epigenetic dysregulation of the brain-derived neurotrophic factor (Bdnf) gene. The Bdnf gene encodes for BDNF, a neurotrophin involved in early brain development, neural plasticity, learning, and memory. Recent work suggests that exercise may be neuroprotective in part by supporting BDNF protein and gene expression, making it an exciting target for therapeutic interventions. To our knowledge, exercise has never been studied as a therapeutic intervention in preclinical rodent models of caregiver maltreatment. To that end, the current study investigated the effect of an adult voluntary wheel running intervention on Bdnf methylation and expression in the prefrontal cortex of rats who experienced aversive caregiving in infancy. We employed a rodent model (Long Evans rats) wherein rat pups experienced intermittent caregiver-induced stress from postnatal days 1–7 and were given voluntary access to a running wheel (except in the control condition) from postnatal days 70–90 as a young adulthood treatment intervention. Our results indicate that maltreatment and exercise affect Bdnf gene methylation in an exon, CG site, and sex-specific manner. Here we add to a growing body of evidence of the ability for our experiences, including exercise, to permeate the brain. Keywords: Early life stress, Bdnf, exercise, prefrontal cortex.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.