{"title":"Drafting behaviors in fish induced by a local pressure drop around a hydrofoil model","authors":"Go Eguchi , Tsutomu Takagi , Shinsuke Torisawa , Kohsei Takehara","doi":"10.1016/j.jtbi.2024.111821","DOIUrl":null,"url":null,"abstract":"<div><p>Fish schooling has the improvement in hydrodynamic propulsive efficiency through the interaction of flow field induced by fish bodies and tail beat. Such energy-saving behaviors due to flow interactions also occur with changes in the flow field caused by structures. We examined the differences between a live fish swimming around a streamlined hydrofoil model prepared to represent fish body and swimming alone in a flow tank. We observed that the fish can remain in the same place without tail beating. It called “drafting” behavior. The analysis of fish drafting showed that fish obtained thrust using a local pressure drop caused by the high velocity flow even in the vicinity of the hydrofoil model at an angle of attack α of 10° to 20°without flow separation, and fish balanced forces by using an α of fish body. This tendency was confirmed in the model experiment using a two-axis load cell, and the forces acting on the fish body was the smallest value when the fish model was placed in the same conditions as a live fish experiment. We also confirmed by simulation and found that the α of fish body generated lift force and counteract the suction force. Above results indicate that a fish can balance the anterior–posterior and lateral direction forces by using a local pressure drop around a hydrofoil model as suction force, and using angle of attack on its body, thereby realizing drafting.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fish schooling has the improvement in hydrodynamic propulsive efficiency through the interaction of flow field induced by fish bodies and tail beat. Such energy-saving behaviors due to flow interactions also occur with changes in the flow field caused by structures. We examined the differences between a live fish swimming around a streamlined hydrofoil model prepared to represent fish body and swimming alone in a flow tank. We observed that the fish can remain in the same place without tail beating. It called “drafting” behavior. The analysis of fish drafting showed that fish obtained thrust using a local pressure drop caused by the high velocity flow even in the vicinity of the hydrofoil model at an angle of attack α of 10° to 20°without flow separation, and fish balanced forces by using an α of fish body. This tendency was confirmed in the model experiment using a two-axis load cell, and the forces acting on the fish body was the smallest value when the fish model was placed in the same conditions as a live fish experiment. We also confirmed by simulation and found that the α of fish body generated lift force and counteract the suction force. Above results indicate that a fish can balance the anterior–posterior and lateral direction forces by using a local pressure drop around a hydrofoil model as suction force, and using angle of attack on its body, thereby realizing drafting.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.