Brian C. Kavanaugh , Megan M. Vigne , Eric Tirrell , W. Luke Acuff , Andrew M. Fukuda , Ryan Thorpe , Anna Sherman , Stephanie R. Jones , Linda L. Carpenter , Audrey R. Tyrka
{"title":"Frontoparietal beta event characteristics are associated with early life stress and psychiatric symptoms in adults","authors":"Brian C. Kavanaugh , Megan M. Vigne , Eric Tirrell , W. Luke Acuff , Andrew M. Fukuda , Ryan Thorpe , Anna Sherman , Stephanie R. Jones , Linda L. Carpenter , Audrey R. Tyrka","doi":"10.1016/j.bandc.2024.106164","DOIUrl":null,"url":null,"abstract":"<div><p>Recent work has found that the presence of transient, oscillatory burst-like events, particularly within the beta band (15–29 Hz), is more closely tied to disease state and behavior across species than traditional electroencephalography (EEG) power metrics. This study sought to examine whether features of beta events over frontoparietal electrodes were associated with early life stress (ELS) and the related clinical presentation. Eighteen adults with documented ELS (n = 18; ELS + ) and eighteen adults without documented ELS (n = 18; ELS-) completed eyes-closed resting state EEG as part of their participation in a larger childhood stress study. The rate, power, duration, and frequency span of transient oscillatory events were calculated within the beta band at five frontoparietal electrodes. ELS variables were positively associated with beta event rate at Fp2 and beta event duration at Pz, in that greater ELS was associated with higher resting rates and longer durations. These beta event characteristics were used to successfully distinguish between ELS + and ELS- groups. In an independent clinical dataset (n = 25), beta event power at Pz was positively correlated with ELS. Beta events deserve ongoing investigation as a potential disease marker of ELS and subsequent psychiatric treatment outcomes.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"177 ","pages":"Article 106164"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278262624000411","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent work has found that the presence of transient, oscillatory burst-like events, particularly within the beta band (15–29 Hz), is more closely tied to disease state and behavior across species than traditional electroencephalography (EEG) power metrics. This study sought to examine whether features of beta events over frontoparietal electrodes were associated with early life stress (ELS) and the related clinical presentation. Eighteen adults with documented ELS (n = 18; ELS + ) and eighteen adults without documented ELS (n = 18; ELS-) completed eyes-closed resting state EEG as part of their participation in a larger childhood stress study. The rate, power, duration, and frequency span of transient oscillatory events were calculated within the beta band at five frontoparietal electrodes. ELS variables were positively associated with beta event rate at Fp2 and beta event duration at Pz, in that greater ELS was associated with higher resting rates and longer durations. These beta event characteristics were used to successfully distinguish between ELS + and ELS- groups. In an independent clinical dataset (n = 25), beta event power at Pz was positively correlated with ELS. Beta events deserve ongoing investigation as a potential disease marker of ELS and subsequent psychiatric treatment outcomes.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.