{"title":"Additive manufacturing for sustainability, circularity and zero-waste: 3DP products from waste plastic bottles","authors":"Ans Al Rashid, Muammer Koç","doi":"10.1016/j.jcomc.2024.100463","DOIUrl":null,"url":null,"abstract":"<div><p>Polymers and their composites are now widely used in several industrial sectors, owing to their flexibility in developing customized products. The significant surge in plastic usage has led to a severe challenge in managing end-of-life plastic waste. Millions of tons of plastic waste produced annually mainly end up in landfills, leaking into the environment and posing severe threats to ecosystems. Innovative solutions to reuse/recycle/repurpose plastic waste are desired to address these global challenges. Therefore, in this study, a sustainable route to converting plastic waste into additive manufacturing (AM) feedstock is presented, where waste plastic bottles (mainly Polyethylene Terephthalate, PET) are recycled using an in-house 3D-printed filament extrusion system to produce filaments for fused filament fabrication (FFF) process. In addition to the recycled PET (rPET), virgin carbon fiber reinforced polyamide-6 (PA6-CF) polymer composites were also used to produce hybrid feedstock filaments. The rPET and rPET/PA6-CF composite filaments were extruded using an in-house filament extruder setup. The produced rPET-based filaments were characterized for their chemical and thermal properties. Subsequently, mechanical characterization was performed on 3D-printed specimens. The mechanical analysis revealed better tensile strength for rPET/PA6-CF than rPET; however, the rPET demonstrated better failure strain and young modulus, demonstrating their potential as viable materials for industrial and consumer applications. The outcomes of this study revealed promising results to promote sustainable production and consumption, complementing the circular economy practices with a straightforward production route to convert plastic waste into AM feedstock.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000343/pdfft?md5=e9c5b8f10ae765d625ad148fee63f25f&pid=1-s2.0-S2666682024000343-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Polymers and their composites are now widely used in several industrial sectors, owing to their flexibility in developing customized products. The significant surge in plastic usage has led to a severe challenge in managing end-of-life plastic waste. Millions of tons of plastic waste produced annually mainly end up in landfills, leaking into the environment and posing severe threats to ecosystems. Innovative solutions to reuse/recycle/repurpose plastic waste are desired to address these global challenges. Therefore, in this study, a sustainable route to converting plastic waste into additive manufacturing (AM) feedstock is presented, where waste plastic bottles (mainly Polyethylene Terephthalate, PET) are recycled using an in-house 3D-printed filament extrusion system to produce filaments for fused filament fabrication (FFF) process. In addition to the recycled PET (rPET), virgin carbon fiber reinforced polyamide-6 (PA6-CF) polymer composites were also used to produce hybrid feedstock filaments. The rPET and rPET/PA6-CF composite filaments were extruded using an in-house filament extruder setup. The produced rPET-based filaments were characterized for their chemical and thermal properties. Subsequently, mechanical characterization was performed on 3D-printed specimens. The mechanical analysis revealed better tensile strength for rPET/PA6-CF than rPET; however, the rPET demonstrated better failure strain and young modulus, demonstrating their potential as viable materials for industrial and consumer applications. The outcomes of this study revealed promising results to promote sustainable production and consumption, complementing the circular economy practices with a straightforward production route to convert plastic waste into AM feedstock.