Poly- and perfluoroalkyl substances destruction via advanced reduction processes: assessing scientific and commercial progress and prospects

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Erika Houtz , David Kempisty , Yaal Lester
{"title":"Poly- and perfluoroalkyl substances destruction via advanced reduction processes: assessing scientific and commercial progress and prospects","authors":"Erika Houtz ,&nbsp;David Kempisty ,&nbsp;Yaal Lester","doi":"10.1016/j.coche.2024.101022","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced reduction processes (ARPs) have demonstrated efficient degradation of poly- and perfluoroalkyl substances (PFAS). This paper describes the maturity level of more established ultraviolet (UV)-based ARPs, along with other reductive processes in the research stage. Commercial ARP vendors offer varying formats of UV-activated photosensitization of chemical additives to generate hydrated electrons in batch mode. These systems are typically coupled with preliminary separation processes and treat a concentrated PFAS waste stream. Other reduction approaches such as metal catalytic reduction have not yet left the academic space. Key areas of progress needed include cost-effective pretreatment approaches, and, relatedly, demonstration of ARPs in complex waste concentrates. Further improvement in reaction kinetics and developing an effective process for treating the most recalcitrant PFAS will also increase adoption of ARPs.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"44 ","pages":"Article 101022"},"PeriodicalIF":8.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339824000236","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced reduction processes (ARPs) have demonstrated efficient degradation of poly- and perfluoroalkyl substances (PFAS). This paper describes the maturity level of more established ultraviolet (UV)-based ARPs, along with other reductive processes in the research stage. Commercial ARP vendors offer varying formats of UV-activated photosensitization of chemical additives to generate hydrated electrons in batch mode. These systems are typically coupled with preliminary separation processes and treat a concentrated PFAS waste stream. Other reduction approaches such as metal catalytic reduction have not yet left the academic space. Key areas of progress needed include cost-effective pretreatment approaches, and, relatedly, demonstration of ARPs in complex waste concentrates. Further improvement in reaction kinetics and developing an effective process for treating the most recalcitrant PFAS will also increase adoption of ARPs.

通过高级还原工艺销毁多氟和全氟烷基物质:评估科学和商业进展及前景
高级还原工艺(ARPs)已证明可高效降解多氟和全氟烷基物质(PFAS)。本文介绍了较成熟的基于紫外线 (UV) 的 ARP 以及处于研究阶段的其他还原工艺的成熟程度。商业 ARP 供应商提供不同形式的紫外线激活光敏化学添加剂,以批量模式产生水合电子。这些系统通常与初步分离工艺相结合,处理浓缩的全氟辛烷磺酸废物流。金属催化还原等其他还原方法尚未走出学术领域。需要取得进展的关键领域包括具有成本效益的预处理方法,以及相关的 ARP 在复杂的废物浓缩物中的示范应用。进一步改进反应动力学和开发处理最难处理的全氟辛烷磺酸的有效工艺,也将提高 ARPs 的采用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信