{"title":"Symmetry and Pieri rules for the bisymmetric Macdonald polynomials","authors":"Manuel Concha, Luc Lapointe","doi":"10.1016/j.ejc.2024.103973","DOIUrl":null,"url":null,"abstract":"<div><p>Bisymmetric Macdonald polynomials can be obtained through a process of antisymmetrization and <span><math><mi>t</mi></math></span>-symmetrization of non-symmetric Macdonald polynomials. Using the double affine Hecke algebra, we show that the evaluation of the bisymmetric Macdonald polynomials satisfies a symmetry property generalizing that satisfied by the usual Macdonald polynomials. We then obtain Pieri rules for the bisymmetric Macdonald polynomials where the sums are over certain vertical strips.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000581","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bisymmetric Macdonald polynomials can be obtained through a process of antisymmetrization and -symmetrization of non-symmetric Macdonald polynomials. Using the double affine Hecke algebra, we show that the evaluation of the bisymmetric Macdonald polynomials satisfies a symmetry property generalizing that satisfied by the usual Macdonald polynomials. We then obtain Pieri rules for the bisymmetric Macdonald polynomials where the sums are over certain vertical strips.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.