Transition metal (Fe, Co, Ni)-doped cuprous oxide nanowire arrays as self-supporting catalysts for electrocatalytic CO2 reduction reaction to ethylene

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Shihao Min , Zhuoyue Wang , Xiao Xu , Jiaxin He , Miao Sun , Wenlie Lin , Longtian Kang
{"title":"Transition metal (Fe, Co, Ni)-doped cuprous oxide nanowire arrays as self-supporting catalysts for electrocatalytic CO2 reduction reaction to ethylene","authors":"Shihao Min ,&nbsp;Zhuoyue Wang ,&nbsp;Xiao Xu ,&nbsp;Jiaxin He ,&nbsp;Miao Sun ,&nbsp;Wenlie Lin ,&nbsp;Longtian Kang","doi":"10.1016/j.apsusc.2024.160150","DOIUrl":null,"url":null,"abstract":"<div><p>The transition metal (Fe, Co, Ni)-doped cuprous oxide (Cu<sub>2</sub>O) nanowire arrays on Cu mesh (CM) (M-Cu<sub>2</sub>O@CM, M = Fe, Co, Ni) are successfully synthesized for the electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to ethylene (C<sub>2</sub>H<sub>4</sub>) through the simple calcination and impregnation-exchange methods. Systematic characterizations have demonstrated that the Ni/Co doping in Cu<sub>2</sub>O@CM is conducive to stabilizing the Cu<sup>+</sup> sites due to the electron transfer from Cu<sub>2</sub>O to Ni/Co, while the Fe doping has the opposite effect. Consequently, they show the different electrocatalytic performances of Ni-Cu<sub>2</sub>O@CM &gt; Co-Cu<sub>2</sub>O@CM &gt; Cu<sub>2</sub>O@CM &gt; Fe-Cu<sub>2</sub>O@CM for CO<sub>2</sub>RR to C<sub>2</sub>H<sub>4</sub> in an H-cell. Among them, Ni-Cu<sub>2</sub>O@CM exhibits the ∼2.0-fold faradaic efficiency for C<sub>2</sub>H<sub>4</sub> (58.2 % <em>vs.</em> 28.7 %) and the ∼2.5-fold current density (−37.6 <em>vs.</em> −15.0 mA·cm<sup>−2</sup>) at −1.1 V <em>vs.</em> RHE, as compared with Cu<sub>2</sub>O@CM. Further experiments reveal that during the electrocatalytic CO<sub>2</sub>RR, the Ni-Cu<sub>2</sub>O@CM can generate more *CO, which promotes the C–C coupling reaction. The activity of Co-Cu<sub>2</sub>O@CM is lower than Ni-Cu<sub>2</sub>O@CM because of the strong adsorption of *COOH, while the Fe-Cu<sub>2</sub>O@CM even exhibits a lower activity than Cu<sub>2</sub>O@CM. This work provides an insight into the effect of transition metal-doped Cu<sub>2</sub>O array on the electrocatalytic CO<sub>2</sub>RR to C<sub>2</sub>H<sub>4</sub> products.</p></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"663 ","pages":"Article 160150"},"PeriodicalIF":6.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224008638","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The transition metal (Fe, Co, Ni)-doped cuprous oxide (Cu2O) nanowire arrays on Cu mesh (CM) (M-Cu2O@CM, M = Fe, Co, Ni) are successfully synthesized for the electrocatalytic CO2 reduction reaction (CO2RR) to ethylene (C2H4) through the simple calcination and impregnation-exchange methods. Systematic characterizations have demonstrated that the Ni/Co doping in Cu2O@CM is conducive to stabilizing the Cu+ sites due to the electron transfer from Cu2O to Ni/Co, while the Fe doping has the opposite effect. Consequently, they show the different electrocatalytic performances of Ni-Cu2O@CM > Co-Cu2O@CM > Cu2O@CM > Fe-Cu2O@CM for CO2RR to C2H4 in an H-cell. Among them, Ni-Cu2O@CM exhibits the ∼2.0-fold faradaic efficiency for C2H4 (58.2 % vs. 28.7 %) and the ∼2.5-fold current density (−37.6 vs. −15.0 mA·cm−2) at −1.1 V vs. RHE, as compared with Cu2O@CM. Further experiments reveal that during the electrocatalytic CO2RR, the Ni-Cu2O@CM can generate more *CO, which promotes the C–C coupling reaction. The activity of Co-Cu2O@CM is lower than Ni-Cu2O@CM because of the strong adsorption of *COOH, while the Fe-Cu2O@CM even exhibits a lower activity than Cu2O@CM. This work provides an insight into the effect of transition metal-doped Cu2O array on the electrocatalytic CO2RR to C2H4 products.

Abstract Image

掺杂过渡金属(铁、钴、镍)的氧化亚铜纳米线阵列作为电催化二氧化碳还原乙烯反应的自支撑催化剂
通过简单的煅烧和浸渍-交换方法,成功合成了掺杂过渡金属(铁、钴、镍)的氧化亚铜(Cu2O)纳米线阵列(M-Cu2O@CM,M = 铁、钴、镍),用于电催化二氧化碳还原反应(CO2RR)制乙烯(C2H4)。系统表征表明,由于电子从 Cu2O 转移到 Ni/Co,Cu2O@CM 中的 Ni/Co 掺杂有利于稳定 Cu+ 位点,而 Fe 掺杂则具有相反的效果。因此,他们展示了 Ni-Cu2O@CM > Co-Cu2O@CM > Cu2O@CM > Fe-Cu2O@CM 在 H 细胞中将 CO2RR 转化为 C2H4 的不同电催化性能。其中,与 Cu2O@CM 相比,Ni-Cu2O@CM 在-1.1 V 对 RHE 条件下对 C2H4 的远动效率提高了 2.0 倍(58.2 % 对 28.7 %),电流密度提高了 2.5 倍(-37.6 对 -15.0 mA-cm-2)。进一步的实验表明,在电催化 CO2RR 的过程中,Ni-Cu2O@CM 可以生成更多的 *CO,从而促进 C-C 偶联反应。Co-Cu2O@CM 的活性比 Ni-Cu2O@CM 低,因为它吸附了较多的 *COOH,而 Fe-Cu2O@CM 的活性甚至低于 Cu2O@CM。这项研究深入探讨了掺杂过渡金属的 Cu2O 阵列对电催化 CO2RR 转化为 C2H4 产物的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信